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In this paper, we discuss the spin-reflection-positivity method introduced by
Lieb [E. H. Lieb, Phys. Rev. Lett. 62:1201 (1989)] and its applications to
strongly correlated electron systems in a pedagogical manner. We emphasize the
important role played by the sign rule of the ground-state wave function in
studying a many-body system. To make our explanation more readable, we
shall first review some well-known one-dimensional examples and recall the
Lieb–Mattis theorem on the Heisenberg localized spin models. Then, after
introducing the general theory of spin-reflection positivity, we show in detail
how to use it to overcome the sign problem caused by the fermion characteris-
tics of itinerant electrons in strongly correlated models. Finally, we establish
several rigorous results on the Hubbard model, the periodic Anderson model
and the Kondo lattice model.
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method; magnetic and superconducting correlation functions.

1. INTRODUCTION

In condensed matter physics, the electronic band theory, which is based on
the independent electron approximation, is impressively successful in
accounting for nonmagnetic properties, such as transport and thermody-
namics, of solids. In this approximation, the repulsive Coulomb interaction
between electrons is renormalized into their effective mass and these quasi-
electrons move near freely in a background periodic potential provided by
the positive ions. (1)



However, this theory fails to explain some very important phenomena,
such as the magnetic ordering (2) and the Mott metal-insulator transi-
tion, (3, 4) observed in experiments. For instance, in the transition and rare-
earth metals, the ferromagnetic order appears when the samples are cooled
below their Curie temperatures. This ordering is attributed to the existence
of the partly filled d- or f-electron bands in addition to the conduction
band. In these bands, the electron density is concentrated near the ions but
sparse between them. In other words, it seems that an electron is ‘‘on’’ a
particular ion. This circumstance requires an atomic description of the
electrons in d- or f-band. On the other hand, the same electrons in these
bands contribute significantly to the low temperature specific heat of the
solids. Also, the magnetic moments per ion in the ferromagnetic phase of
these materials is far from integral numbers of Bohr magneton. These
observations seem to be consistent with the prediction of the band theory
based on the itinerant electron picture.

In a seminal paper published in 1963, (5) Hubbard argued that it is the
correlation effect caused by the electronic short-ranged intra-atomic
interaction in the narrow d- or f-band that makes the electrons exhibiting
both atomic and itinerant behavior simultaneously. Roughly speaking, the
intra-atomic interaction energy of two electrons on the same ion will be
lowered, according to the Hund’s rule, if their spins point to same direc-
tion, say upwards. Therefore, when the intra-atomic interaction is suffi-
ciently strong to produce appreciable correlation, the state of total spin up
on an ion may persist for a period long compared with the d- or f-electron
hopping time. In this circumstance, one can think of the spin as being
associated with the atom rather than with electrons and the possibility of
an atomic model emerges.

To analytically study the correlation effect in a narrow band solid,
Hubbard, (5) Gutzwiller, (6) and Kanamori (7) introduced independently a
simplified model , which is now known as the Hubbard model. On a finite
lattice L with NL sites, the Hamiltonian of this model is of the following
form

HH=−t C
s

C
OijP

(ĉ†is ĉjs+ĉ†js ĉis)+U C
i ¥ L

(n̂i‘ −
1
2)(n̂ia −

1
2)−mN̂, (1)

where ĉ†is (ĉis) denotes the fermion creation (annihilation) operator which
creates (annihilates) an electron of spin s at lattice site i. OijP stands for a
pair of lattice sites. t > 0 and U > 0 are parameters representing the
itinerant energy and the short-ranged intra-atomic Coulomb repulsion of
electrons, respectively. m is the chemical potential of the system.

In Hamiltonian (1), the first term is the well-known tight-binding
Hamiltonian, which represents electron hopping in the periodic ionic
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background potential. The second term gives an on-site (intra-atomic)
repulsion interaction between electrons. When two electrons of opposite
spins are on the same ion, they repel each other with a short-ranged
interaction U. It is this interaction term that induces the correlation
between electrons: If an atomic orbital is already occupied by one electron
with spin s, the possibility for another electron with different spin s̄
hopping into the same orbital is greatly suppressed by an energy penalty U.
Consequently, electrons tend to be localized on the ions.

Obviously, the Hubbard model is an oversimplified model, in which
the set of the multiple atomic levels is reduced to a single orbital. Conse-
quently, only one electronic band, the conduction s band, is represented.
However, it turns out that this seemingly simple model is actually very dif-
ficult to analyze quantitatively. In the past four decades, many physicists
have made great efforts to uncover the physics of this model. For example,
by a Green function decoupling scheme, Hubbard showed that, at temper-
ature T=0, the single s band is continuously split into a lower and an
upper band as U increases. (8) This picture gives a natural explanation of the
Mott metal-insulator transition in some solids. (3, 4) However, Hubbard’s
approach does not provide information on the features of quasi-particles in
the system. On the other hand, Brinkman and Rice (9) concentrated on the
low-energy behavior of the model and observed the disappearance of the
quasiparticle peak at the Mott transition point by applying the Gutzwiller
variational method. (6) But, their analysis does not produce the lower and
upper Hubbard bands. To create a unified description which treats both
the low and high energy features of the Hubbard model on equal footing,
various analytical techniques, such as the effective Hamiltonian
approach, (10) the quantum Monte Carlo (11) and the Lanczos exact diago-
nalization (12) numerical methods, and the quantum field machineries, (13)

were introduced. In particular, the recently-developed density matrix
renormalization group numerical techniques (14) give a very accurate
description of the Hubbard model in one dimension, while the dynamical
mean-field theory (15, 16) provides exact information of the same model in the
limit of infinite dimensionality (or coordination number).

Because of the subtle fermion correlation effects built in the Hubbard
model, exact solutions and rigorous results are clearly useful bench marks.
However, they are rare. The well-known examples are the exact solution of
the Hubbard model in one dimension (17) and the Nagaoka theorem. (18)

While the exact solution of Lieb and Wu shows the absence of the Mott
transition in the one-dimensional Hubbard model and hence, put the
simple picture of the lower and upper Hubbard bands in serious doubt,
Nagaoka’s theorem reveals the existence of ferromagnetism in the ground
state of the model with U=. and the electron number Ne=NL−1. It is
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certainly consistent with Hubbard’s original conjecture. (5) Recently, the
ferromagnetic order in the finite-U Hubbard model on some special lattices
was also proven by Mielke (19) and Tasaki. (20)

One of the the main difficulties in establishing rigorous results for the
Hubbard model is caused by the so-called fermion sign problem. As the
Pauli principle requires, when two itinerant electrons interchange their
positions, an extra negative sign is created. Consequently, the sign of
expansion coefficients in the ground-state wave function of the Hubbard
model is completely intractable. As we shall explain in the following, it is
this problem that makes many mathematical tools developed for analyzing
the localized fermion models inapplicable. Fortunately, in the case con-
sidered by Nagaoka, this sign problem can be avoided. Since the system
has only one hole, electrons are only allowed to interchange their positions
in a very restricted way dictated by the infinite Coulomb repulsion. (18)

In one dimension, this problem can be also ignored if the electron hopping
is restricted to a pair of nearest-neighbor sites. In this case, one can prop-
erly arrange the positions of electrons with the different spins on the chain
such that the fermion problem is completely eliminated. (21, 22) However, we
have to face it in dealing with the finite-U Hubbard model on an arbitrary
higher dimensional lattice.

In a paper published in 1989, (23) Lieb made a breakthrough by intro-
ducing a completely new approach, which is now called Lieb’s spin-reflec-
tion-positivity method. By using it, the difficulties caused by the fermion
sign problem inherited in the Hubbard model can be overcome in some
cases. Therefore, Lieb was able to show that the ground state of the
Hubbard model is nondegenerate in these cases. More importantly, some
previously-developed techniques for the localized fermion models (24)

become also applicable. In particular, with these techniques, Lieb proved
that the ground state of the Hubbard model has an unsaturated magneti-
zation under certain conditions, which we shall explain in Section 5.

Inspired by these new developments, many authors, including us,
applied subsequently the spin-reflection-positivity method to study the
ground states of other strongly correlated electron models, (25–29) such as the
periodic Anderson model (30) and the Kondo lattice model, (31, 32) to inves-
tigate their correlation functions, (33–35) to prove the existence of the ferri-
magnetic long-range order in the ground state of the Hubbard model, (36)

and to establish some general relations satisfied by the charged gap, the
quasiparticle gap and the spin excitation gap of these models. (37)

The purpose of this paper is to introduce the spin-reflection-positivity
method and its consequences to a wide audience. Therefore, without
making much efforts on mathematical abstraction and generalization, we
shall explain how to explore the properties of the strongly correlated
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electron models by applying this method to some concrete systems in a
pedagogical manner. This paper is not a complete review in the sense that
every contribution is covered, but an attempt has been made to mention, at
least, most of topics in this field. Besides, we shall also skip some rigorous
results, such as the stability of the Nagaoka ferromagnetic state (38) and the
uniform density theorems, (39) whose proofs were achieved by different
techniques rather than the spin-reflection-positivity method. Readers can
find an excellent review on these topics in ref. 40.

In the following discussion, we shall often take the Hubbard model for
example, due to its simplicity. However, we would like to emphasize that
the same theorems can be also proven for other strongly correlated electron
models. In particular, we have the periodic Anderson model (30) and the
Kondo lattice model (31) in mind. These models are widely used in the
study of condensed matter physics. (32) In the Fock representation, their
Hamiltonians are respectively given by

HA=−t C
s

C
OijP

(ĉ†is ĉjs+ĉ†js ĉis)+V C
s

C
i ¥ L

(ĉ†isd̂is+d̂ †
is ĉis)

+U C
i ¥ L

(d̂ †
i‘ d̂i‘ −

1
2)(d̂

†
ia d̂ia −

1
2)−mN̂, (2)

and

HK=−t C
s

C
OijP

(ĉ†is ĉjs+ĉ†js ĉis)+J C
i ¥ L

ŝi · ŝi −mN̂. (3)

In Eq. (2), ĉis and d̂is represent the atomic s- and d-orbital fermion opera-
tors at lattice site i, respectively. V stands for their hybridization energy.
Similarly, in Eq. (3), {ŝi} stands for the spin operators of the itinerant
electrons in the s-band and {ŝi} is the set of the localized spins in the
f-band. J > 0 is the antiferromagnetic exchange interaction between them.
Technically, the existence of the additional d- or f-orbital in these models
may cause some minor problems, which we shall address in the proper
places.

This paper is organized as follows: In Section 2, we introduce several
definitions and notation, which will be used in our discussions. Some
common symmetries of these strongly correlated electron models are
explained. In Section 3, we recall briefly a few basic definitions and results
of the general reflection positivity theory, on which the spin-reflection
positivity method is based. In Section 4, we establish sign rules for the
ground states of some simple quantum mechanical systems, such as the
localized spin models. The technique described in this section will be used
to deal with more complicated itinerant electron models. In Section 5, we
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discuss on the spin-reflection-positivity method and its applications to
strongly correlated electron systems. We show that the ground-state wave
function of a spin-reflection positive itinerant electron model satisfies a
weaker sign rule, which allows us to overcome the difficulties caused by the
fermion sign problem. In Section 6, we consider some strongly correlated
electron models with an odd number of electrons. In this case, their
Hamiltonian is not spin-reflection positive. However, one can still show
that their quasiparticle gaps and charged gaps are larger than their excita-
tion gaps. In Section 7, we explain shortly how to generalize the spin-
reflection-positivity method to the case of nonzero temperature. Finally, in
Section 8, we summarize this paper. We shall also mention some related
issue and open problems.

2. SYMMETRIES OF THE STRONGLY CORRELATED ELECTRON

MODELS

To begin with, we would like to introduce several definitions and
notation. In particular, we recall some common symmetries shared by these
strongly correlated electron models.

In literature, a lattice L is called bipartite with respect to the Hubbard
Hamiltonian if it can be separated into two sublattices A and B such that,
electron hopping takes place only between a site i in one sublattice to a
site j in another sublattice. One example is the simple cubic lattice. It is
bipartite if electron hopping in Hamiltonian (1) is restricted to a pair of
nearest-neighbor sites.

When a lattice is bipartite with respect to the Hubbard Hamiltonian, it
is also bipartite to the Hamiltonians of the periodic Anderson model and
the Kondo lattice model. This fact can be easily understood by introducing
a ‘‘double layer lattice structure.’’ To illustrate the idea, let us consider the
periodic Anderson model on a two-dimensional square lattice. Take two
identical copies of this lattice, L1 and L2, and make a doubly-layered lattice
L̃ by connecting the corresponding lattice points of L1 and L2 with bonds
of length a=1. Then, each point of L̃ has coordinates r=(i, m) with
m=1, 2, and L̃ has 2NL lattice points. Next, we define new fermion opera-
tors êrs by

êrs=˛
ĉis, if m=1;
d̂is, if m=2.

(4)

Obviously, with the definitions of L̃ and êrs, Hamiltonian (2) can be
thought of as the Hamiltonian of a generalized Hubbard model on the
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bipartite lattice L̃, if V is taken to be the ‘‘hopping’’ constant of ê-fermions
between layer 1 and layer 2.

In the following, we shall mainly concentrate on the strongly corre-
lated models on a bipartite lattice.

The Hamiltonians of these strongly correlated electron models enjoy
some common symmetries, which we shall exploit in the following. In this
section, we recall briefly these symmetries and their consequences. A more
detailed discussion on this subject can be found in ref. 41.

(1) Hamiltonians HH, HA, and HK commute with the total particle
number operators N̂. Consequently, their Hilbert spaces can be divided
into numerous subspaces {V(N)}. Each subspace is characterized by a
specific integer N, the total number of electrons in the system. In particu-
lar, the subspace V(N) is called half-filled if N=NL for the Hubbard
model; N=2NL for both the periodic Anderson model and the Kondo
lattice model.

As a matter of fact, N‘ and Na , the particle numbers of electrons with
up-spin and down-spin, are also conserved for the Hubbard model and the
periodic Anderson model. Consequently, V(N) can be further written as a
direct sum of subspaces {V(N‘=N1, Na=N−N1)} in these cases.

(2) Define the total spin operators, for the Hubbard model by

Ŝx —
1
2
C
i ¥ L

(ĉ†i‘ ĉia+ĉ†ia ĉi‘), Ŝy —
1
2i

C
i ¥ L

(ĉ†i‘ ĉia −ĉ†ia ĉi‘),

Ŝz —
1
2
C
i ¥ L

(n̂i‘ −n̂ia),

(5)

and for the periodic Anderson model by

Ŝx —
1
2
C
i ¥ L

(ĉ†i‘ ĉia+d̂ †
i‘ d̂ia+ĉ†ia ĉi‘+d̂ †

ia d̂i‘),

Ŝy —
1
2i

C
i ¥ L

(ĉ†i‘ ĉia+d̂ †
i‘ d̂ia −ĉ†ia ĉi‘ −d̂ †

ia d̂i‘),

Ŝz —
1
2
C
i ¥ L

(n̂ci‘+n̂di‘ −n̂cia −n̂dia).

(6)

Then, it is easy to check that these operators satisfy the commutation rela-
tions of the angular momentum operators and also commute with the
Hamiltonians HH and HA, respectively. Therefore, both Ŝ2 and Ŝz are good
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quantum numbers and each eigenvalue En(S) of these Hamiltonians corre-
sponds to 2S+1 eigenstates {Yn(M)} with −S [ M [ S.

The definition of the spin operators for the Kondo lattice model is
slightly different. Certainly, one can define these operators by replacing
d̂-fermion operators in Eq. (6) with f̂-fermion operators, which represent
electrons in the localized f-orbitals of the Kondo lattice model. However,
unlike the itinerant d̂-fermion operators of the periodic Anderson model,
the localized f̂-fermion operators are required to satisfy the following con-
straint condition

f̂†
i‘ f̂i‘+f̂†

ia f̂ia=1 (7)

imposed at each lattice site i. Although this constraint condition does not
violate the spin SU(2) symmetry of the Kondo lattice Hamiltonian, it does
cause some problems in applying the spin-positivity-reflection method.

We emphasize that the spin SU(2) symmetry is possessed by the
Hamiltonians HH, HA, and HK on any lattice, which may not be bipartite.

(3) When the chemical potential m=0, these models on a bipartite
lattice have an additional symmetry: Their Hamiltonians also commute
with the so-called pseudo-spin operators, which are defined, for the
Hubbard model by

Ĵx —
1
2
C
i ¥ L

E(i)(ĉ†i‘ ĉ
†
ia+ĉia ĉi‘), Ĵy —

1
2i

C
i ¥ L

E(i)(ĉ†i‘ ĉ
†
ia −ĉia ĉi‘),

Ĵz —
1
2
C
i ¥ L

(n̂i‘+n̂ia −1), (8)

and for the symmetric periodic Anderson model by

Ĵx —
1
2
C
i ¥ L
E(i)(ĉ†i‘ ĉ

†
ia+ĉia ĉi‘ −d̂ †

i‘ d̂
†
ia −d̂ia d̂i‘),

Ĵy —
1
2i

C
i ¥ L
E(i)(ĉ†i‘ ĉ

†
ia −ĉia ĉi‘ −d̂ †

i‘ d̂
†
ia+d̂ia d̂i‘),

Ĵz —
1
2
C
i ¥ L

(n̂ci‘+n̂cia+n̂di‘+n̂dia −2),

(9)

where E(i)=1, for i ¥ A; E(i)=−1, for i ¥ B, is the so-called alternating
function. The pseudo-spin operators of the Kondo lattice model are given
by replacing the d̂-fermion operators in Eq. (9) with the f̂-fermion opera-
tors, subject to condition (7).
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It is easy to check that these operators also satisfy the commutation
relations of the angular momentum operators and commute with the cor-
responding spin operators defined in Eqs. (5) and (6). Therefore, both J2

and Jz are conserved quantities. In physics, they represent actually the
pairing and the charge-density-wave (CDW) freedom of electron pairs.

(4) Except the above-mentioned ‘‘trivial’’ symmetries, these models
have also a ‘‘hidden’’ particle-hole symmetry, when they are defined on a
bipartite lattice. Take the Hubbard Hamiltonian for example. We define a
unitary transformation by ref. 42

ÛH=5D
i ¥ L

(ĉ†i‘+ĉi‘) D
i ¥ A

(2n̂i‘ −1)65D
i ¥ L

(ĉ†ia+ĉia) D
i ¥ A

(2n̂ia −1)6 . (10)

When the number of lattice sites, NL, is an even integer, it is easy to check
that, under the transformation, the electron operators are changed by

Û†
H ĉi‘ÛH=E(i) ĉ

†
i‘ , Û†

H ĉ
†
i‘ÛH=E(i) ĉi‘ ,

Û†
H ĉiaÛH=E(i) ĉ

†
ia , Û†

H ĉ
†
iaÛH=E(i) ĉia .

(11)

Consequently, the first two terms of the Hubbard Hamiltonian are
unchanged by this transformation. But the chemical potential term −mN̂
becomes −m(2NL−N̂) and the subspace V(N1, N2) is mapped into
V(NL−N1, NL−N2). Therefore, when m=0, ÛH is a symmetric transfor-
mation of the Hubbard Hamiltonian and hence, the global ground state of
HH coincides with its ground state in the corresponding half-filled subspace
V(NL/2, NL/2). (41, 43)

The similar transformation can also be defined for both the periodic
Anderson model and the Kondo lattice model. For instance, for the Kondo
lattice model, the unitary particle-hole transformation ÛK is defined by

Û†
K ĉi‘ÛK=E(i) ĉ

†
i‘ , Û†

K ĉiaÛK=E(i) ĉ
†
ia ,

Û†
Kf̂i‘ÛK=−E(i) f̂†

i‘ , Û†
Kf̂iaÛK=−E(i) f̂†

ia .
(12)

It preserves not only the Hamiltonian when m=0, but also the constraint
condition (7).

3. BASIC REFLECTION POSITIVITY

With the above preparations, we recall the basic definitions and results
of reflection positivity theory in this section. The method was first intro-
duced in the quantum field theory by Osterwalder and Schrader. (44) Its
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applications to localized spin systems was initialized in refs. 45–47.
A detailed review on this subject is given in ref. 48.

The reflection positivity method is based on the following observa-
tions: For a given many-body Hamiltonian on a lattice L, the set U of all
the relevant operators (observables) of the system is an algebra with the
operations of addition, complex scalar multiplication and operator
product. In many cases, this algebra can be further written as a direct
product of two subalgebras U+ and U− , i.e., U=U+ éU− . Moreover, a
one-to-one linear mapping (isomorphism) h between U+ and U− can be
also established.

We take the Hubbard model for example. For this model, the relevant
observable algebra U is the family of polynomials in all the fermion opera-
tors {ĉ†is} and {ĉis}. We would like to emphasize that, by this definition,
the Hubbard Hamiltonian itself is a member of U. We choose U+=U‘

(resp. U−=Ua ) to be the subset of polynomials in {ĉ†i‘} and {ĉi‘} (resp.
{ĉ†ia} and {ĉia}). An natural isomorphism h between U‘ and Ua is given
by h(ĉ†i‘)=ĉ†ia and h(ĉi‘)=ĉia . In this case, h is called the spin reflection
mapping. However, we still need to solve a technical problem to write U
into a direct product of U‘ and Ua .

The difficulty is caused by the anticommutation relation imposed on
the fermion operators with different spins. (In physics, this requirement is
unnecessary, although the fermion operators of the same spin must satisfy
these relations required by the Pauli principle). To eliminate this problem,
we apply a method proposed in ref. 27. Introduce the so-called quasi-
fermion operators by

Ĉi‘ — ĉi‘ , Ĉia — (−1)N̂‘ ĉia , (13)

where N̂‘ is the total number operator of electrons with up-spin in the
system and assume that ĉi‘ and ĉia satisfy the canonical anticommutation
relations. Then, one can easily check that {Ĉia}, now, commute with {Ĉi‘}.
By replacing the electron operators with the quasi-fermion operators, we
have U=U‘ éUa . This allows us to rewrite the Hubbard Hamiltonian as

HH=T̂‘ é Îa+Î‘ é T̂a+U C
i ¥ L

(n̂i‘ −
1
2) é (n̂ia −

1
2)−mN̂, (14)

where T̂s=(−t) ;OijP (Ĉ†
isĈjs+Ĉ†

jsĈis) and Îs is the identity operator acting
in the subalgebra Us.

Keeping this example in mind, we continue our discussion on the reflec-
tion positivity. Take an arbitrary Hermitian polynomial (Hamiltonian)
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Ĥ (Not necessarily the previously given Hamiltonian, say HH). We define a
linear functional by

OÂPĤ — Z−1
Ĥ Tr(Â exp−bĤ), (15)

where b=1/T and Â is an arbitrary operator in the algebra U. In Eq. (15),
ZĤ=Tr exp(−bĤ). In terms of this functional, the Hamiltonian Ĥ is
called reflection positive if and only if

OÂh(Â)PĤ \ 0 (16)

holds for all Â ¥U+. In Eq. (16), B̄̂ is the complex conjugate (not the
Hermitian conjugate) of operator B̂.

A sufficient condition for a specific Hamiltonian to be reflection
positive is given in the following theorem.

Theorem 3.1. If Ĥ ¥U can be written as

Ĥ=B̂ é Î−+Î+ é h(B̂)− C
k

j=1
D̂j é h(D̂j), (17)

with B̂, D̂j ¥U+, then Ĥ is reflection positive.
We emphasize that it is the negative sign in the crossing terms which

makes Ĥ reflection positive.
Another important result is the Dyson–Lieb–Simon theorem. (46)

Theorem 3.2. Assume that Hamiltonian Ĥ has the form

Ĥ=Ĥ(Â, B̂) — Â é Î−+Î+ é B̂− C
K

j=1
D̂j é h(D̂j) (18)

with Â=Â† ¥U+ and B̂=B̂† ¥U− , then its ground-state energy E0(Â, B̂)
satisfies inequality

E0(Â, B̂) \ 1
2 E0(Â, h(Â))+1

2 E0(h(B̂), B̂). (19)

Both Theorems 3.1 and 3.2 have been applied to study the localized
spin models. Some of these results are summarized in ref. 48. However, we
shall skip their proofs here. Instead, we prove them by studying some con-
crete examples in the following sections. In this way, the implications of
these theorems can be seen more clearly. In fact, after reading the proofs of
Theorem 6.1 and Lemma 7.1, the readers should have no difficulty to
establish the general proofs of these theorems.
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In general, the Hamiltonian of a specific many-body system, such as
the Hubbard model, does not possess the reflection positive form of
Theorem 3.1. Therefore, we cannot directly show whether this Hamiltonian
is reflection positive. However, in many cases, we can find a unitary trans-
formation which maps Ĥ into an equivalent Hamiltonian H̃ and the latter
has the required form. That allows us to uncover some properties of the
ground state of H̃ by using Theorem 3.1. On the other hand, since H̃ is
unitarily equivalent to Ĥ, they must have the same spectrum. In particular,
their ground states are mapped into each other by the unitary transforma-
tion and its inverse. Therefore, it is possible for us to understand the
behavior of the ground state of Ĥ by studying its counterpart.

For instance, by applying the so-called partial particle-hole transfor-
mation

ŨH=5D
i ¥ L

(ĉ†i‘+ĉi‘) D
i ¥ A

(2n̂i‘ −1)6 (20)

which only transforms the up-spin fermion operators according to Eq. (11),
the Hubbard Hamiltonian is mapped into

H̃H=Ũ†
HHHŨH=T̂‘ é Îa+Î‘ é T̂a

−U C
i ¥ L

(ni‘ −
1
2) é (nia −

1
2)−m(NL−N̂‘)−mN̂a . (21)

Notice that all the operators in H̃ are real and the coupling constant −U is
negative. Consequently, when m=0, H̃H can be written into the spin-
reflection positive form of Theorem 3.1 by letting D̂i=`U (n̂i −1/2).

Similarly, the partial particle-hole transformation ŨA can be also
defined for the periodic Anderson model. (25) Under this transformation, we
have (with m=0)

H̃A=Ũ†
AHAŨA=T̂‘ é Îa+Î‘ é T̂a

+V C
i ¥ L

(Ĉ†
i‘D̂i‘+D̂†

i‘Ĉi‘) é Îa+Î‘ é V C
i ¥ L

(Ĉ†
iaD̂ia+D̂†

iaĈia)

−U C
i ¥ L

(nDi‘ −
1
2) é (nDia −

1
2). (22)

Obviously, H̃A is spin-reflection positive.
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By following the example of the periodic Anderson model, one can
easily introduce the partial particle-hole transformation ŨK for the Kondo
lattice model. (26) Under this transformation, the Hamiltonian ĤK becomes

H̃K=Ũ†
KHKŨK=T̂‘ é Îa+Î‘ é T̂a

−
J
2
C
i ¥ L

[Ĉ†
i‘ F̂i‘ é Ĉ†

ia F̂ia+F̂†
i‘Ĉi‘ é F̂†

iaĈia]

+
J
4
C
i ¥ L

(n̂Ci‘+n̂Cia −1)(n̂Fi‘+n̂Fia −1). (23)

However, it is not spin-reflection positive. Fortunately, this situation can
be saved by taking the constraint condition (7), which now reads

F̂†
i‘ F̂i‘=F̂†

ia F̂ia , (24)

into consideration. This equation requires that a localized orbital must be
either empty or occupied simultaneously by a pair of F-quasifermions.
Substituting this condition into the expression of the Hamiltonian H̃K and
dropping an unimportant constant JNL/4, we obtain

H̃K=1 T̂‘+
J
2
C
i ¥ L

n̂Ci‘ n̂
F
i‘ −

J
4
N̂‘
2 é Îa+Î‘ é 1 T̂a+

J
2
C
i ¥ L

n̂Cia n̂
F
ia −

J
4
N̂a
2

−
J
2
C
i ¥ L

(Ĉ†
i‘ F̂i‘) é (Ĉ†

ia F̂ia)−
J
2
C
i ¥ L

(F̂†
i‘Ĉi‘) é (F̂†

iaĈia), (25)

which is in the spin-reflection positive form.
We are now ready to explore the consequences of the spin-reflection

positivity method.

4. SIMPLE SIGN RULE FOR THE GROUND-STATE WAVE FUNCTION

AND ITS CONSEQUENCES

As stated in Introduction, a direct application of the spin-reflection-
positivity method is to overcome the difficulties caused by the fermion sign
problem of the itinerant electron systems. To make our explanation more
readable, we shall follow a golden rule for the chroniclers and start from
where the last story ends. Let us first recall some facts which we learnt
from the elementary quantum mechanics. (49)

It is well known that, in many cases, the ground-state wave function of
the Schrödinger equation can be chosen to be real. Furthermore, it has no
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Fig. 1. The potential function of a one-dimensional quantum well.

node inside of the region in which particles move. Consequently, one can
choose a ground-state wave function which is positive in the region.
A corollary of this sign rule is that the ground state is nondegenerate. In
this section, we show that this type of sign rule can be also established for
the ground states of some localized fermion models, such as the Heisenberg
model on a bipartite lattice.

As a warm-up exercise, let us first recall how to prove the sign rule for
the ground-state wave function of a simple system: One particle moving in
the one-dimensional potential well shown in Fig. 1. According to the ele-
mentary quantum mechanics, the ground-state wave function Y0(x) of this
system is determined by the Schrödinger equation

−
(
2

2m
d2Y0(x)

dx2 +V(x)Y0(x)=E0Y0(x), (26)

with E0 being the lowest eigenvalue of the differential equation. For sim-
plicity, we assume that the potential function V(x) is continuous and
bounded in the interval (0, R).

When V(x)=0, Eq. (26) can be explicitly solved. For any x ¥ (0, R),
we have Y0(x)=`2/R sin(px/R) > 0 and hence, the sign rule is true. To
show that the rule still holds for the ground-state wave function Y0(x)
when V(x) ] 0, we apply both the variational principle and the Harnack
theorem for the second order elliptical differential equations. (50) While the
variational principle argument provides a global picture of the ground-state
wave function, differential equation (26) determines its local behavior.

First, we notice that, by the variational principle, Y0(x) is a ground-
state solution of Eq. (26), if and only if it is also a minimizing function of
the following energy functional

E(k)=
(
2

2m
F
R

0

:dk(x)
dx
:2 dx+F

R

0
|k(x)|2 V(x) dx (27)
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in the function space H1(0, R), requiring that both |k|2 and |dk/dx|2 be
integrable over (0, R). Suppose that the sign of Y0(x) is indefinite in (0, R),
as shown in Fig. 2.

We construct a new wave function Y(x) by taking the absolute value
of Y0(x), i.e., Y(x)=|Y0 | (x). Notice that the replacement of Y0(x) by its
absolute value does not change the value of the second term in Eq. (27). On
the other hand, it can be shown that inequality

F
R

0

: dY0(x)
dx
:2dx \ F

R

0

: d |Y0 | (x)
dx
:2 dx (28)

holds (See the appendix of ref. 27). Therefore, we have

min
k ¥H1

E(k)=E(Y0) \ E(Y). (29)

In other words, Y(x) must be also a minimizing function of energy func-
tional (27) and hence, a solution of Eq. (26).

Next, we show that the ground state wave function Y0(x) cannot have
zero point in (0, R). If this is not true, then, there must be, at least, one
point x0 ¥ (0, R) such that Y(x0)=|Y0 | (x0)=0. However, as a nonnega-
tive solution of a second order elliptical differential equation, Y(x) satisfies
the so-called Harnack theorem. (50) It tells us that, on any open interval
(a, b) … (0, R), there is a constant C(a, b) such that

max
x ¥ (a, b)

Y(x) [ C(a, b) min
x ¥ (a, b)

Y(x). (30)

Let us take an open interval containing x0. Then, the Harnack theorem
implies that Y(x) — 0 in this interval. Repeating this argument an appro-
priate number of times, we find that Y(x) as well as Y0(x) must be identi-
cally zero in (0, R). This is certainly absurd. Therefore, Y0(x) cannot have
zero point in (0, R) and must be nondegenerate. It enables us to take
Y0(x)=Y(x), which is positive in the interval.

Fig. 2. The ground state wave functions Y0(x) and |Y0 | (x).
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It is worthwhile to emphasize that, in the above proof, the connectivity
of the interval (0, R) by the particle motion is essential to exclude the zero
points of Y0(x) inside it. For the strongly correlated electron systems, we
shall show that electron hopping on the lattice plays a similar role.

With this example in mind, we proceed to establish the similar sign
rule for some localized electron models, such as the antiferromagnetic
Heisenberg model. On a finite lattice L, the Hamiltonian of this well-
known model is of the following form

HAF=C
OijP

JijSFi · SFj=
1
2 C
OijP

Jij(Ŝi+Ŝj−+Ŝi− Ŝj+)+C
OijP

JijŜizŜjz, (31)

where Jij \ 0 are the superexchange couplings between the localized spins SFi
and SFj. The lattice L is assumed to be connected by these couplings and
bipartite, i.e., Jij ] 0 only connect lattice sites i and j belonging to different
sublattices.

Since the Heisenberg Hamiltonian commutes with the total spin
operators Ŝ2 and Ŝz, both S and Sz are good quantum numbers of the
system. Therefore, the Hilbert space of this model is a direct sum of
subspaces {V(Sz=M)}. A natural basis of subspace V(M) is given by

qa(M)=|m1, m2,..., mNLP, (32)

where mi represents the eigenvalue of operator Ŝiz at site i and they are
subject to the condition m1+m2+·· ·+mNL=M. In terms of this basis, the
ground-state wave function Y0(M) of HAF can be written as

Y0(M)=C
a

Caqa(M), (33)

where the sum is over all the possible configurations {qa(M)}.
However, due to the positive sign of the coupling constants {Jij}, it is

difficult to uncover directly the sign rule satisfied by these expansion coef-
ficients {Ca}. To remedy this problem, we follow ref. 24 and introduce a
unitary transformation ÛAF=exp(ip; i ¥ B Ŝiz), which rotates each spin in
sublattice B by an angle p about its Sz-axis. Under ÛAF, the spin operators
are transformed by

Û†
AFŜixÛAF=E(i) Ŝix, Û†

AFŜiyÛAF=E(i) Ŝiy, Û†
AFŜizÛAF=Ŝiz. (34)
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Obviously, this transformation does not change Sz of each configuration
qa(M). In other words, it maps V(M) into itself. Consequently, the
Heisenberg Hamiltonian HAF is mapped into

H̃AF=Û†
AFHAFÛAF=C

OijP
(−Jij/2)(Ŝi+Ŝj−+Ŝi− Ŝj+)+C

OijP
JijŜizŜjz. (35)

In the meantime, its ground state Y0(M) in the subspace V(M) becomes

Ỹ0(M)=C
a

C̃aqa(M). (36)

For Ỹ0(M), we have the following sign rule.

Theorem 4.1. Let Ỹ0(M) be the ground state of H̃AF in the sub-
space V(Sz=M). Then, its expansion coefficients {C̃a} in Eq. (36) can be
chosen to be strictly positive. Therefore, Ỹ0(M) is nondegenerate.

Proof. Following the above procedure described for the one-dimen-
sional quantum mechanical system, we rewrite first the ground-state energy
E0(M) of the Hamiltonian H̃AF into an expectation (energy functional)
form.

E0(M)=OỸ0(M)| H̃AF |Ỹ0(M)P

=C
OijP

1 −Jij

2
2 OỸ0(M)| Ŝi+Ŝj−+Ŝi− Ŝj+ |Ỹ0(M)P

+C
OijP

JijOỸ0(M)| ŜizŜjz |Ỹ0(M)P

=C
a, aŒ

C
OijP

1 −Jij

2
2 C̃g

a C̃aŒOqa(M)| Ŝi+Ŝj−+Ŝi− Ŝj+ |qaŒ(M)P

+C
a

C
OijP

Jij |C̃a |2 Oqa(M)| ŜizŜjz |qa(M)P. (37)

Notice that the operators Ŝi+ and Ŝi− are defined by

Ŝi+ |Si, miP=`Si(Si+1)−mi(mi+1) |Si, mi+1P,

Ŝi− |Si, miP=`Si(Si+1)−mi(mi −1) |Si, mi −1P.
(38)

Therefore, we have inequality

Oqa(M)| Ŝi+Ŝj−+Ŝi− Ŝj+ |qaŒ(M)P \ 0 (39)
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for any admissible pair of indices a and a −. It implies that, if we replace
each coefficient C̃a with its absolute value |C̃a | in Eq. (37), the quantity on
the right-hand side of the equation becomes less. In other words, the new
wave function Ỹ(M) defined by

Ỹ(M) —C
a

|C̃a | qa(M) (40)

has a lower energy than E0(M). By the variational principle, Ỹ(M) must
be a ground state of the Hamiltonian H̃AF in the same subspace V(M), too.
Therefore, we reach the conclusion that, for any given ground state Ỹ0(M)
of H̃AF in V(M), there exists another one whose expansion coefficients are
nonnegative.

In the second step, we show that none of the expansion coefficients
{C̃a} in Eq. (36) can be zero. As emphasized above, this fact is determined
by the connectivity of lattice L by the spin flipping, which may be thought
of as the hopping of hard-core bosons on the lattice. (51)

Assume that one coefficient C̃b=0. Then, the corresponding coeffi-
cient |C̃b | in the ground-state wave function Ỹ(M) is also absent. Mul-
tiplying the Schrödinger equation H̃AFỸ(M)=E0(M) Ỹ(M) from the left
by Oqb(M)|, we obtain

E0(M) |C̃b |=−C
c

Oqb(M)| C
OijP

Jij

2
(Ŝi+Ŝj−+Ŝi− Ŝj+) |qc(M)P |C̃c |

+C
OijP

JijOqb(M)| ŜizŜjz |qb(M)P |C̃b |. (41)

Substituting |C̃b |=0 into this equation yields

C
c

Oqb(M)| C
OijP

1Jij

2
2 (Ŝi+Ŝj−+Ŝi− Ŝj+) |qc(M)P |C̃c |=0. (42)

On the other hand, as shown by Eq. (39), all the matrix elements in
Eq. (42) are nonnegative. Therefore, any coefficient |C̃c |, representing a
state qc(M) which is connected to qb(M) by a spin-flipping exchange, must
be identically zero.

By repeating this process an appropriate number of times, we can
show that all the coefficients |C̃a | in Eq. (36) must be identically zero
because lattice L is connected by the spin-flipping interaction. However,
this is not possible. Therefore, C̃a ] 0 must hold for each admissible
index a. L
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In literature, this sign rule is called the Marshall rule, although it is
rather different from the original one discovered by Marshall for the anti-
ferromagnetic Heisenberg Hamiltonian. (52) It leads to the nondegeneracy of
the ground state of the Hamiltonian H̃AF in each subspace V(M). On the
other hand, since H̃AF is unitarily equivalent to the original antiferromag-
netic Heisenberg Hamiltonian HAF, the ground state Y0(M) of HAF must
be also nondegenerate in V(M).

Interestingly, the sign rule established for the ground-state wave func-
tion of a many-body model provides generally more information on the
system. For instance, in their original paper, (24) based on Theorem 4.1, Lieb
and Mattis also proved

Theorem 4.2. The global ground state of the antiferromagnetic
Heisenberg model on a bipartite lattice has spin number

S=|SA −SB |. (43)

Here, SA=; i ¥ A Si and SB=; i ¥ B Si are the algebraic sums of the spins on
sublattices A and B, respectively.

Proof. To prove this theorem, Lieb and Mattis introduced an
auxiliary Hamiltonian

HLM=C
i ¥ A

C
j ¥ B

SFi · SFj. (44)

Obviously, for this Hamiltonian, we can repeat the proof of Theorem 4.1.
Therefore, all the coefficients {C̃LM

a } in the ground-state wave function
ỸLM

0 (M) of the transformed Hamiltonian H̃LM=Û†
AFHLMÛAF are positive.

Consequently, ỸLM
0 (M) has a nonzero overlap with the ground state

Ỹ0(M). By applying the inverse of ÛAF to both ground states, we obtain

OY0(M) |YLM
0 (M)P ] 0. (45)

It implies that Y0(M) and YLM
0 (M) must have the same spin number S. On

the other hand, the energy levels of HLM can be explicitly calculated and
are given by

E(S)=1
2 [S(S+1)−SA(SA+1)−SB(SB+1)]. (46)

Therefore, if |M| \ |SA −SB |, its ground state YLM
0 (M) in subspace V(M)

must have S=|M| and its global ground state has spin number
S=|SA −SB |. So does the global ground state of the antiferromagnetic
Heisenberg Hamiltonian. L
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Fig. 3. The lattice structure of organic conjugated polymers.

Theorem 4.2 shows that the Marshall rule for the ground state of the
antiferromagnetic Heisenberg model can be exploited to discover more
interesting properties of the system. In fact, it is not the whole story yet. By
using the Marshall rule and the Lieb–Mattis theorem, we can further prove
the following theorem. (36, 53)

Theorem 4.3. The ground state of the antiferromagnetic Heisenberg
model on a bipartite lattice has both the ferromagnetic and the antiferro-
magnetic long-range orders, if nA, the number of sites belonging to sublat-
tice A in each unit cell, is not equal to nB. In other words, it is ferrimagne-
tically ordered.

One example of such a lattice is shown in Fig. 3. For this lattice, we
have nA=2 and nB=1.

Proof of Theorem 4.3. First, let us consider the transverse spin
correlation in the ground state Ỹ0(M) of the transformed Hamiltonian
H̃AF. Take an arbitrary pair of lattice sites h and k. The transverse spin
correlation in the ground state is defined by

OỸ0(M)| Ŝh− Ŝk+ |Ỹ0(M)P=C
a, b

C̃aC̃bOqa(M)| Ŝh− Ŝk+ |qb(M)P. (47)

As shown above, the matrix element Oqa | Ŝh+Ŝk− |qbP is nonnegative for
any pair of basis vectors qa and qb. On the other hand, by Theorem 4.1, all
the expansion coefficients C̃a are positive. Therefore, we have

OỸ0(M)| Ŝh− Ŝk+ |Ỹ0(M)P \ 0. (48)

Next, by applying the inverse of the unitary transformation ÛAF to this
inequality, we map Ỹ0(M) onto Y0(M), the ground state of the
antiferromagnetic Heisenberg model in the same subspace V(M).
Consequently, we obtain

OỸ0(M)| Ŝh− Ŝk+ |Ỹ0(M)P

=OỸ0(M)| ÛAF(Û
†
AFŜh− ÛAF)(Û

†
AFŜk+ÛAF) Û

†
AF |Ỹ0(M)P

=E(h) E(k)OY0(M)| Ŝh− Ŝk+ |Y0(M)P \ 0. (49)
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It tells us that the transverse spin correlation of Y0(M) is antiferro-
magnetic. A direct consequence of Eq. (49) is the following inequality

1
NL

C
k, h
E(h) E(k)OY0(M)| Ŝh− Ŝk+ |Y0(M)P

\
1
NL

C
k, h

OY0(M)| Ŝh− Ŝk+ |Y0(M)P=
1
NL

OY0(M)| Ŝ− Ŝ+ |Y0(M)P,
(50)

which holds in each admissible subspace V(M).
On the other hand, by the Lieb–Mattis theorem, when nA ] nB, the

total spin of the global ground state of HAF is

S=|SA −SB |=s |NA −NB |=sNc |nA −nB |, (51)

where s is the value of spin at each lattice site and Nc is the number of unit
cells in the lattice. Therefore, the global ground state is (2S+1)-fold
degenerate and each representative Y0(M) of it has a spin number Sz=M
with −S [M [ S. Take an arbitrary complex function f(i) on lattice L
with |f(i)|=1. We define the averaged transverse and longitudinal spin
correlation functions of Y0 by

GT(f ) —
1

2S+1
C
S

M=−S
OY0(M)| Ŝ−(f̄ ) Ŝ+(f ) |Y0(M)P,

GL(f ) —
1

2S+1
C
S

M=−S
OY0(M)| Ŝz(f̄ ) Ŝz(f ) |Y0(M)P,

(52)

where Ŝa(f ) —N−1/2
L ; i ¥ Lf(i) Ŝia with a=+, −, z, is the ‘‘Fourier trans-

formation’’ of these spin operators. In particular, the functions n(i)=1 and
E(i) give the ferromagnetic and the antiferromagnetic components of the
spin-wave excitations in the system, respectively. With these definitions,
inequality (50) is reduced to

GT(E) \ GT(n). (53)

Furthermore, by the spin SU(2) symmetry of the Heisenberg Hamiltonian,
we have also

GT(f )=2GL(f ). (54)
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Therefore, inequality

GL(E)=
1
2 GT(E) \

1
2 GT(n)=GL(n) (55)

holds. The longitudinal spin correlation function GL(n) on the right-hand
side of Eq. (55) can be directly calculated. A little algebra yields

GL(n)=
1

(2S+1) NL
C
S

M=−S
OY0(M)| ŜzŜz |Y0(M)P

=
2

(2S+1) NL
(S2+(S−1)2+·· ·+12) \

S2

3NL
. (56)

Therefore, when S=Ncs |nA −nB |, we have

GL(E) \ GL(n) 5 O(N2
c/NL) 5 O(NL), (57)

as NL Q.. This equation shows that the global ground state of the Hei-
senberg model on the lattice has both the longitudinal ferromagnetic and
antiferromagnetic long-range orders. Therefore, the model represents a
ferrimagnet. L

Theorem 4.3 was first proven for the Hubbard model (36) (see
Theorems 5.2–5.5 in the next section) and then, was generalized to the
antiferromagnetic Heisenberg model. (53) It can be also proven for the
so-called alternative spin models. (54) The simplest example of these systems
is the antiferromagnetic Heisenberg model on a one-dimensional (bipartite)
chain. However, unlike the usual spin chain, we have different spins on
different sublattices in such a system. For example, the materials with spins
of S=1 on sublattice A and S=1/2 on the sublattice B have been made in
experiments. (55) Naturally, their properties attract many physicists’
interest. (56–61) To these systems, the Lieb–Mattis theorem applies. For
instance, the global ground state of the alternative spin chain has spin

S=|SA −SB |=
NL
2
:1−1

2
:=NL

4
. (58)

Therefore, by repeating the proof of Theorem 4.3, we can easily show that
this system has also a ferrimagnetic long-range order. (54)

5. APPLICATION OF THE SPIN-REFLECTION-POSITIVITY METHOD

TO ITINERANT ELECTRON MODELS

Now, we return to the itinerant electron models. As stated in Intro-
duction, the fermion sign problem in these models makes their rigorous
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analysis extremely difficult. Consequently, in general, it is even hard to
prove the nondegeneracy of their ground states, let alone the existence of
various long-range orders in these states.

This situation has been greatly improved by introduction of the spin-
reflection-positivity method. (23) With this method, Lieb showed that, if the
Hamiltonian of a strongly correlated electron system is spin-reflection
positive, then the expansion coefficients of its ground-state wave function
can be written into a matrix and this matrix is positive (or negative) defi-
nite. Obviously, this result is a generalized sign rule for the itinerant elec-
tron models. It implies the nondegeneracy the ground states of these
models. More importantly, it also enables us to employ the techniques
developed in Section 4 to study the correlation functions of these itinerant
electron systems, as we shall explain in the following.

As usual, we take the negative-U Hubbard Hamiltonian (21) for
example. Formally, with m=0, it is already in the spin-reflection positive
form of Theorem 3.1. However, there is a subtle point which is worth
mentioning. The reflection positivity of the Hamiltonian in Theorem 3.1
implies that the subspaces, in which the operators B̂ and h(B̂) act respec-
tively, are isomorphic to each other. For the negative-U Hubbard model, it
requires that both the subspaces V‘ and Va have the same dimension. For-
tunately, this requirement can be easily satisfied by taking an even integer
N=2L for the electron number in the system. As noticed in Section 2, the
(negative-U) Hubbard Hamiltonian commutes with the spin operators Ŝ+
and Ŝ− when the trivial chemical potential term is ignored. Consequently,
one of its ground states has spin number Sz=(1/2)(N‘ −Na)=0 in the
subspace V(L, L). Moreover, in terms of the quasi-fermion operators, we
have V(L, L)=V‘(L) é Va(L) and a natural basis of Vs(L) is given by

ksa(L)=Ĉ†
i1sĈ

†
i2s · · · Ĉ

†
iLs |0P, (59)

where (i1, i2,..., iL) denotes the lattice sites occupied by electrons of spin s.
|0P is the vacuum state. Obviously, V‘(L) is isomorphic to Va(L) and both
of them have the same dimension D=CL

NL . Therefore, the ground-state
wave function of the negative-U Hubbard Hamiltonian in V(L, L) can be
written as

Ỹ0(2L)=C
a, b

Wabk
‘

a (L) é k a

b(L). (60)

By taking a for the row index and b for the column index, the expansion
coefficients {Wab} in Eq. (60) can be put into a CL

NL ×CL
NL square matrix W.

For this matrix, we have
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Theorem 5.1 (Lieb). Assume that 0 [ L [NL. Then, the coeffi-
cient matrix W of the ground-state wave function Ỹ0(2L) of the negative-
U Hubbard Hamiltonian on an arbitrary (not necessarily bipartite) lattice
can be chosen to be positive definite.

Proof. Following the procedure described in Section 4, we first write
the energy of the ground state Ỹ0(2L) as

E0(2L)=OỸ0(2L)| H̃H |Ỹ0(2L)P

=C
a, b

C
c, d

W̄cdWabOk
‘

c | T̂‘ |k ‘

aP ddb+C
a, b

C
c, d

W̄cdWabdcaOk
a

d | T̂a |k a

bP

− U C
i ¥ L

C
a, b

C
c, d

W̄cdWabOk
‘

c | n̂i‘ −
1
2 |k

‘

aPOk
a

d | n̂ia −
1
2 |k

a

bP , (61)

with Tr W†W=1. Without causing confusion, we shall drop the spin
indices in Eq. (61) and write it into a more compact form

E0(2L)=Tr(TWW†)+Tr(TW†W)−U C
i ¥ L

Tr(W†NiWNi), (62)

where T is the matrix of the electron hopping operator T̂ and Ni stands for
the matrix of N̂i=(n̂i −1/2).

On the other hand, since all the operators and the basis vectors are
real and the Hamiltonian is symmetric in the spin indices, we see that, if W
corresponds to a ground state, so does W†. By linearity, it implies that
both W+W† and i(W−W†) also represent ground states of the negative-
U Hubbard model. Therefore, we may choose an Hermitian coefficient
matrix W and diagonalize it by a unitary matrix V. Let {|mP} be the
column vectors of V and {rm} be the diagonal elements of V†WV=R.
Then, the ground-state energy E0(2L) can be further written as

E0(2L)=2 C
m

Om| T |mP r2m −U C
i ¥ L

C
m, n

rmrn |On| Ni |mP|2. (63)

Obviously, if we replace rm with |rm |, the first sum on the right-hand side of
this equation keeps unchanged but the second sum becomes less. Therefore,
if the coefficient matrix W is indefinite, we can construct a new state
Ỹ(2L) by replacing W with |W| — V |R| V† in Eq. (60) and this state has a
lower energy (Notice that Tr |W|2=Tr W2=1). By the variational
principle, Ỹ(2L) must be also a ground state.

Next, we show that W does not have zero eigenvalue. Suppose that it
is not true. Then, by the definition of matrix |W|, there is, at least, a
nonzero vector uF such that |W| uF=0. In other words, the kernel space Q of
matrix |W| is not trivial. We prove that, under this assumption, Q actually
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coincides with the whole space in which |W| acts. Therefore, |W| must be
identically zero. However, this is impossible. Consequently, W cannot have
zero eigenvalue at all. It implies that the ground state of the negative-U
Hubbard model in the subspace V(L, L) is nondegenerate. Therefore, W
equals |W| (or −|W|).

We start from the Schrödinger equation of the ground-state wave
function Ỹ(2L). Taking the inner product of this equation with vectors
{Ok a

d | é Ok
a

c |}, it can be written into an equation of matrices

T |W|+|W| T−U C
i ¥ L

Ni |W| Ni=E0(2L) |W|. (64)

Picking up an arbitrary vector vF ¥ Q and calculating the expectation of
Eq. (64) in it, we obtain

OvF| T |W| |vFP+OvF| |W| T |vFP−U C
i ¥ L

OvF| Ni |W| Ni |vFP=E0(2L)OvF| |W| |vFP.
(65)

Since |W|vF=0 by definition, this equation is reduced to

C
i ¥ L

OvF| Ni |W| Ni |vFP=0. (66)

On the other hand, since |W| is semipositive definite, we conclude that
NivF ¥ Q for each i ¥ L. In other words, Ni maps Q into itself. Now, let
equation (64) act on vF. Because |W| vF=0 and |W| NivF=0, we have
|W| TvF=0. Thus T, which is the matrix of the electron hopping term, also
maps Q into Q.

With these facts in mind, we finish the proof of Theorem 5.1. Notice
that a vector vF ¥ Q actually represents the set of coefficients {vl} in the
state |vP=; l vlk

a

l . Therefore, vF ] 0 indicates that there is, at least, one
index m such that vm ] 0. Let Im be the set of lattice sites which are occupied
by electrons in the configuration k a

m . Obviously, we can project out vector

vFm — (0, 0,..., vm,..., 0) — vmeFm (67)

by multiplying vF with the matrix Nm=<i ¥ Im (Ni+1/2) from left. On the
other hand, since each matrix Ni+1/2 maps the kernel space Q into itself,
vFm=NmvF must be also a vector in Q. Next, we multiply vFm again by matrix
T, which represents the electron hopping operator T̂a and also maps Q
into Q, from left. It yields another nonzero vector vF −, which belongs to Q
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and does not have component in eFm. That enables us to project out a dif-
ferent basis vector eFn by multiplying vF − with a proper matrix Nn=
<i ¥ In (Ni+1/2) and then, dividing the result by v −n. Since lattice L is con-
nected by the electron hopping operator T̂a , one can easily see that, starting
from vFm, any basis vector eFE can be reached by repeating the above opera-
tions an appropriate number of times. Because these operations map Q into
Q, we conclude that all the basis vectors {eFa} must be contained in Q. In
other words, |W| — 0. This is impossible. Therefore, W cannot have zero
eigenvalue and Theorem 5.1 is proven. L

A direct corollary of Theorem 5.1 is ref. 23

Corollary 5.1. The ground state Ỹ0(2L) of the negative-U Hubbard
model in the subspace V(L, L) has total spin S=0. Therefore, it is the
unique ground state of H̃H in the subspace V(2L)=;L

l=−L À V(L−l, L+l).

Proof. Since the expansion coefficient matrix W of the ground state
Ỹ0(2L) is positive definite, one of its diagonal elements Waa ] 0. Therefore,
Ỹ0(2L) has a nonzero overlap with state |k ‘

aP é |k a

aP, which has total spin
S=0. So does Ỹ0(2L). L

Theorem 5.1 can be thought of as a weaker sign rule for the ground
state of the negative-U Hubbard model. Indeed, although the coefficient
matrix W is positive definite, these coefficients have actually different
signs. However, this result is sufficient for people to reveal some interesting
properties of the strongly correlated electron systems. For instance, based
on Theorem 5.1, Lieb further proved the following theorem in ref. 23.

Theorem 5.2. The ground state of the original Hubbard Hamiltonian
(with positive U) in the half-filled subspace has total spin S=|NA −NB |/2.

To prove Theorem 5.2, Lieb used the fact that the half-filled Hubbard
Hamiltonian is reduced to an antiferromagnetic Heisenberg Hamiltonian
on the same lattice when U is large. (10) Consequently, Theorem 4.2 of
Section 4 applies. Here, we shall take a different approach, which was
independently proposed in the second and third papers of ref. 26.

Proof of Theorem 5.2. Applying the partial particle-hole trans-
formation ŨH to the Lieb–Mattis Hamiltonian defined in Eq. (44), we
obtain a unitarily equivalent Hamiltonian

H̃LM=− 1
2 C
i ¥ A

C
j ¥ B

(Ĉi‘ĈiaĈ
†
jaĈ

†
j‘+Ĉ†

iaĈ
†
i‘Ĉj‘Ĉja)

+1
4 C
i ¥ A

C
j ¥ B

(Ĉ†
i‘Ĉi‘+Ĉ†

iaĈia −1)(Ĉ†
j‘Ĉj‘+Ĉ†

jaĈja −1). (68)
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However, this Hamiltonian is not spin-reflection positive. Fortunately, in
the Lieb–Mattis Hamiltonian, all the electrons are localized. Therefore, like
the transformed Kondo lattice Hamiltonian H̃K, the quasi-fermion opera-
tors Ĉis and Ĉ†

is in H̃LM are subject to the condition Ĉ†
i‘Ĉi‘=Ĉ†

iaĈia . Sub-
stituting this condition into H̃LM and neglecting a constant NANB/4, it can
be further rewritten as

H̃LM=1
4
12 C

i ¥ A
C
j ¥ B

n̂i‘ n̂j‘ −NA C
j ¥ B

n̂j‘ −NB C
i ¥ A

n̂i‘
2

+1
4
12 C

i ¥ A
C
j ¥ B

n̂ia n̂ja −NA C
j ¥ B

n̂ja −NB C
i ¥ A

n̂ia
2

− 1
2 C
i ¥ A

C
j ¥ B

(Ĉ†
j‘Ĉi‘) é (Ĉ†

jaĈia)−
1
2 C
i ¥ A

C
j ¥ B

(Ĉ†
i‘Ĉj‘) é (Ĉ†

iaĈja), (69)

which is spin-reflection positive. By repeating the proof of Theorem 5.1, we
conclude that the expansion coefficient matrix of the ground-state wave
function ỸLM

0 (2L) is also positive definite. (In fact, it is a diagonal matrix
according to the constraint condition imposed on the quasi-fermion opera-
tors). Therefore, the ground-state wave function Ỹ0(2L)=Ỹ0(L, L) of
the negative-U Hubbard model has a nonzero overlap with ỸLM

0 (2L)=
ỸLM

0 (L, L). By applying the inverse of the partial particle-hole transforma-
tion to both the wave functions, we map them onto Y0(NL−L, L) and
YLM

0 (NL−L, L), which are the ground state of the positive-U Hubbard
Hamiltonian and the Lieb–Mattis Hamiltonian in the same subspace
V(NL−L, L), respectively, and obtain

OY0(NL−L, L) |YLM
0 (NL−L, L)P ] 0. (70)

Consequently, these states must have the same spin number S. On the
other hand, as shown in Theorem 4.2, the spin of the ground state
YLM

0 (NL−L, L) —YLM
0 (M=NL/2−L) can be directly calculated. There-

fore, by repeating the proof of Theorem 4.2, we reach the conclusion of
Theorem 5.2. L

As another application of Theorem 5.1, we shall now prove Theorem 3.1
for the negative-U Hubbard model. More precisely, we show

Theorem 5.3. For any local operator K̂‘ , inequality

OỸ0(2L)| K̂‘h(K̂‘) |Ỹ0(2L)P=OỸ0(2L)| K̂‘K̂a |Ỹ0(2L)P \ 0 (71)

holds for the ground state Ỹ0(2L) of the negative-U Hubbard Hamiltonian
in each subspace V(2L) with 0 [ L [NL.
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Proof. To establish Theorem 5.3, we shall follow the proof of
Theorem 1 in our paper. (34) Substituting the wave function of Ỹ0(L, L) into
the right-hand side of Eq. (71), we obtain

OỸ0(2L)| K̂‘K̂a |Ỹ0(2L)P=C
a, b

C
c, d

W̄cdWabOk
‘

c | K̂‘ |k ‘

aPOk
a

d | K̂a |k a

bP. (72)

Notice that the vectors {ksm} are real by their definition (See Eq. (59)).
Therefore, we have

Ok
a

d | K̂a |k a

bP=Ok
a

d | K̂a |k a

bP=Ok
a

b | K̂
†
a |k a

dP. (73)

It enables us to rewrite Eq. (72) into

OỸ0(2L)| K̂‘K̂a |Ỹ0(2L)P=Tr(W†KWK†)=Tr(WKWK†), (74)

where K is the matrix of the operator K̂ in terms of the basis vectors {ksm}.
On the other hand, since the coefficient matrix W of Ỹ0(2L) is posi-

tive definite by Theorem 5.1, its square root `W is well defined. There-
fore, the right-hand side of the above equation can be further rewritten as

Tr(WKWK†)=Tr[(`WK`W)(`WK`W)†], (75)

which is certainly a nonnegative quantity. L

Theorem 5.3 can be thought of as a special case of Theorem 3.1 at
temperature T=0. In fact, its proof demands more strict conditions on the
Hubbard Hamiltonian. For instance, in establishing the positive definite-
ness of the coefficient matrix W of Ỹ0(2L), we used implicitly the condi-
tion that the Coulomb repulsion U > 0 at each site i ¥ L. However, to
prove Theorem 3.1 at nonzero temperature, such conditions are not neces-
sary, as we shall show in Section 7 (See the proof of Lemma 7.1).

Theorem 5.3 was later used to explore the correlation functions in the
ground states of the itinerant electron models. (34–36) First, by applying this
theorem, we proved the following theorem on the pairing correlation
function of the negative-U Hubbard model. (34)

Theorem 5.4. The on-site pairing correlation of electrons in the
ground state Ỹ0(2L) of the negative-U Hubbard model on an arbitrary
(not necessarily bipartite) lattice is nonnegative. More precisely, inequality

OỸ0(2L)| (Ĉ†
h‘Ĉ

†
ha)(ĈkaĈk‘) |Ỹ0(2L)P \ 0 (76)

holds for any pair of lattice sites h and k.
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Proof. The above correlation function can be rewritten as

OỸ0(2L)| (Ĉ†
h‘Ĉ

†
ha)(ĈkaĈk‘) |Ỹ0(2L)P

=OỸ0(2L)| (Ĉ†
h‘Ĉk‘)(Ĉ

†
haĈka) |Ỹ0(2L)P. (77)

Let K̂‘=Ĉ†
h‘Ĉk‘ and K̂a=Ĉ†

haĈka . Then, the right-hand side of this
equation has the form of OỸ0(2L)| K̂‘K̂a |Ỹ0(2L)P. Therefore, by Theorem
5.3, it is nonnegative. L

In physics, the operator Ĉ†
i‘Ĉ

†
ia represents the creation operator of an

on-site Cooper pair of electrons at site i. Therefore, the correlation function
of Theorem 5.4 characterizes the superconducting off-diagonal order in the
ground state Ỹ0(2L) (see ref. 62 for the definition of the off-diagonal cor-
relation function in a fermion system), if we take the negative-U Hubbard
model as a phenomenological model of superconductivity.(63) Theorem 5.4
actually tells us that, for any unimodular complex function f(i) on lattice L,
inequality

1
NL

C
h, k

OỸ0(2L)| Ĉ†
h‘Ĉ

†
haĈkaĈk‘ |Ỹ0(2L)P

\
1
NL

C
h, k

f(h) f(k)OỸ0(2L)| Ĉ†
h‘Ĉ

†
haĈkaĈk‘ |Ỹ0(2L)P (78)

must hold. Therefore, in the ground state of the negative-U Hubbard
model, the on-site Cooper pair correlation has maximum at momentum
p=0. This conclusion supports the intuitive picture of the tightly-bound
electron pairs behaving like hard-core bosons in the negative-U Hubbard
model. (63)

Another implication of Theorem 5.4 was pointed out by Professor
C. N. Yang in his referee report to ref. 34: Under the inverse transforma-
tion of ŨH, Ỹ0(2L) is mapped onto Y0(NL−L, L), the ground state of the
original Hubbard Hamiltonian in the subspace V(NL−L, L). In the mean-
time, the on-site pairing operator Ĉ†

i‘Ĉ
†
ia (resp. ĈiaĈi‘ ) is transformed

into operator E(i) Ĉi‘Ĉ
†
ia — − E(i) Ŝi− . (resp. E(i) ĈiaĈ

†
i‘ — − E(i) Ŝi+).

Therefore, Eq. (76) becomes

OỸ0(2L)| Ũ†
HŨH(Ĉ

†
h‘Ĉ

†
ha) Ũ

†
HŨH(ĈkaĈk‘) Ũ

†
HŨH |Ỹ0(2L)P

=E(h) E(k)OY0(NL−L, L)| Ŝh− Ŝk+ |Y0(NL−L, L)P \ 0. (79)
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Formally, this inequality is identical to inequality (49) and hence, implies
that the transverse spin correlation in the ground state of the Hubbard
model in each half-filled subspace V(NL−L, L) is antiferromagnetic. It
leads to the following result. (36)

Theorem 5.5. The global ground state of the half-filled Hubbard
model on a bipartite lattice has both the ferromagnetic and the antiferro-
magnetic long-range orders, if nA, the number of sites belonging to sublat-
tice A in each unit cell, is not equal to nB.

Proof. We proved first this theorem for the half-filled Hubbard
model in ref. 36 and then, extended it to the antiferromagnetic Heisenberg
model. (53) Therefore, the proofs of this theorem and Theorem 4.3 in
Section 4 are similar. We shall not repeat it here. In fact, the main differ-
ence between their proofs is in the ways to establish inequalities (49) and
(79), as discussed above. L

The systems discussed in Theorem 5.5 have been actually realized in
experiments. For example, the organic conjugated polymers shown in
Fig. 3 were manufactured by several groups (64) a decade ago. Their proper-
ties are investigated by many groups. (65–69) In fact, ESR and the magnetic
susceptibility measurements showed evidence of the ferrimagnetic long-
range order between unpaired p electrons in these systems. Our rigorous
result indicates that the electronic states of these polymers can be theoreti-
cally described by the half-filled Hubbard model. However, it is also
worthwhile to point out that, in the Hubbard Hamiltonian (1), both
parameters t and U are chosen to be site-independent for simplicity.
However, in the real materials such as the organic polymers shown in
Fig. 3, they are generally site-dependent real constants. Fortunately, in
these cases, one can easily check that all the theorems established in this
section still hold as long as the Coulomb interaction intensity Ui > 0 is
nonzero at any site i ¥ L. Therefore, the ferrimagnetic long-range order in
these systems is very robust.

Theorem 5.1 has been extended to the half-filled periodic Anderson
model (25) and the Kondo lattice model. (26) As a result, Eq. (79) can be easily
proven for these strongly correlated electron models and the spin correla-
tion in their ground states are also antiferromagnetic.(35) Interestingly,
the constraint condition (24) on the wave functions of the transformed
Hamiltonian H̃K does not cause any technical difficulty in handling the
system with an even number of electrons. Instead, as shown in section III,
it helps actually to write H̃K into a spin-reflection positive form.
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6. APPLICATION OF THE DYSON–LIEB–SIMON THEOREM TO THE

STRONGLY CORRELATED ELECTRON SYSTEMS

In Section 5, we studied the properties of the strongly correlated elec-
tron models with an even number of particles. In the following, we shall
consider the opposite case: The same models with an odd number of
electrons.

In this case, although the hopping operators T̂‘ and T̂a have the same
form, they are actually not isomorphic to each other. This is due to fact
that the spaces V‘ and Va , in which T̂‘ and T̂a act respectively, have differ-
ent dimensions. To see this point, let us assume that there are 2L+1 elec-
trons in the system and denote the ground state of the Hubbard Hamilto-
nian by Y0(2L+1). Obviously, this state has spin S \ 1/2 and one of its
representatives has Sz=(N‘ −Na)/2=1/2. In other words, it is a state in
the subspace V(L+1, L). On the other hand, in terms of the quasi-fermion
operators, V(L+1, L) can be written as V‘(L+1) é Va(L) and a natural
basis of Vs(J) is given by

ksa — Ĉ†
i1s · · · Ĉ

†
iJs |0P, (80)

where J=L+1 for s= ‘ and J=L for s= a . Therefore, V‘(L+1) has
dimension D‘=CL+1

NL while the dimension of Va(L) is CL
NL . In general, they

are not equal. As a result, T̂a is not isomorphic to hT̂‘ since the latter acts
in Va(L+1) rather than Va(L).

Fortunately, although the spin-reflection positivity is violated in this
case, the Dyson–Lieb–Simon theorem (Theorem 3.2) still applies. It enables
us to prove the following inequality for the negative-U Hubbard model. (70)

Theorem 6.1. Let L be an arbitrary (not necessarily bipartite) finite
lattice. Then, for any integer 0 < L < NL, the ground state energies of the
negative-U Hubbard Hamiltonian in subspaces V(2L), V(2L+1) and
V(2L+2) satisfy inequality

E0(2L+1) > 1
2 E0(2L)+1

2 E0(2L+2). (81)

Proof. In terms of the basis vectors defined in Eq. (80), the wave
function Ỹ0(2L+1) can be written as

Ỹ0(2L+1)=C
a, b

Wabk
‘

a é k
a

b. (82)

However, unlike the previous case studied in Section 5, the coefficient
matrix W=(Wab) in Eq. (82) is an CL+1

NL ×CL
NL matrix, which is not square.
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To deal with such a matrix, we employ the singular polar decomposition
theorem in matrix theory.

Lemma 6.1 (Singular Polar Decomposition Theorem). Let A
be an m×n matrix with m ] n.

(i) If m < n, then there exist an m×m unitary matrix U1, an m×m
diagonal semipositive definite matrix R1, and an m×n matrix V1 such that

A=U1R1V1. (83)

Moreover, the rows of matrix V1 are orthonormal vectors.
(ii) Similarly, if m > n, then there exist an m×n matrix V2, an n×n

diagonal semipositive definite matrix R2, and an n×n unitary matrix U2

such that

A=V2R2U2 (84)

with the columns of V2 being orthonormal.
The proof of this lemma can be found in any standard textbook on

matrix theory. (71) For the reader’s convenience, we shall give a simplified
proof of it in the appendix of this paper.

For definiteness, let us assume that the coefficient matrix W has more
rows than columns. In this case, the singular polar decomposition theorem
tells us that there are three matrices UW, VW, and RW such that

W=VWRWUW, (85)

where VW is an CL+1
NL ×CL

NL matrix with orthonormal columns and UW is an
CL
NL ×CL

NL unitary matrix. RW is an CL
NL ×CL

NL diagonal matrix with ele-
ments rc \ 0. Consequently, the ground state wave function Ỹ0(2L+1) can
be rewritten as

Ỹ0(2L+1)=C
a, b

Wabk
‘

a é k
a

b=C
a, b

(VWRWUW)ab k
‘

a é k
a

b

=C
D

c=1
rct

‘

c é f
a

c (86)

with D=CL
NL . In Eq. (86), t ‘c and f a

c are defined by

t
‘

c=C
a

(VW)ac k
‘

a , f
a

c=C
b

(UW)cb k
a

b. (87)

On the other hand, since UW is unitary and the columns of VW are ortho-
normal, the new sets of vectors {t ‘c } and {f a

c } are orthonormal, too. More
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importantly, these new vectors {t ‘c } and {f a

c } are also the eigenvectors of
the particle number operators N̂‘ and N̂a with eigenvalues of L+1 and L,
respectively. The normalization condition of Ỹ0(2L+1) now reads

OỸ0(2L+1) | Ỹ0(2L+1)P=Tr W†W=C
D

c=1
r2c=1. (88)

With the simple form (86) of Ỹ0(2L+1), its energy E0(2L+1) is given
by

E0(2L+1)=OỸ0(2L+1)| H̃H |Ỹ0(2L+1)P

=C
D

c=1
r2c[Ot

‘

c | T̂‘ |t ‘c P+Of
a

c | T̂a |f a

c P]

−U C
i ¥ L

1 C
c1, c2

rc1 rc2Ot
‘

c2
| n̂i‘ −

1
2 |t

‘

c1
POf

a

c2
| n̂ia −

1
2 |f

a

c1
P2 . (89)

By dropping the spin indices in Eq. (89) and applying inequality
|ab| [ 1

2 (|a|
2+|b|2) to each term in the last line, we obtain

E0(2L+1) \
1
2
C
D

c=1
r2c[Otc | T̂ |tcP+Otc | T̂ |tcP]

+
1
2
C
D

c=1
r2c[Ofc | T̂ |fcP+Ofc | T̂ |fcP]

−
U
2

C
i ¥ L

1 C
c1, c2

rc1 rc2 Otc2 | n̂i −
1
2
|tc1POtc2 | n̂i −

1
2
|tc1P2

−
U
2

C
i ¥ L

1 C
c1, c2

rc1 rc2Ofc2 | n̂i −
1
2
|fc1POfc2 | n̂i −

1
2
|fc1P2 . (90)

In the above derivation, inequality rc \ 0 is used.
The right-hand side of Eq. (90) can be further simplified by introduc-

ing new wave functions

Y1(2L+2)=C
D

c=1
rct

‘

c é t̄
a

c , Y2(2L)=C
D

c=1
rcf

‘

c é f̄
a

c , (91)

where t̄sc and f̄sc are the complex conjugates of tsc and fsc , respectively.
In terms of Y1 and Y2, inequality (90) is reduced to

E0(2L+1) \ 1
2 OY1(2L+2)| H̃H |Y1(2L+2)P+1

2 OY2(2L)| H̃H |Y2(2L)P.
(92)
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Notice that, by their constructions, Y1(2L+2) and Y2(2L) are actually
wave functions in the subspaces V(2L+2) and V(2L), respectively. There-
fore, by the variational principle, inequality (92) implies that

E0(2L+1) \ 1
2 E0(2L+2)+1

2 E0(2L). (93)

To finish the proof of Theorem 6.1, we still need to show that
inequality (93) is actually strict. For this purpose, we replace inequality
|ab| [ 1

2 |a|
2+1

2 |b|
2 with identity

ab̄+āb=|a|2+|b|2−|a−b|2. (94)

Consequently, we are able to rewrite Eq. (90) into

E0(2L+1)=
1
2
OY1(2L+2)| H̃H |Y1(2L+2)P+

1
2
OY2(2L)| H̃H |Y2(2L)P

+
U
2

C
i ¥ L

C
c1, c2

rc1 rc2 :Otc2 | n̂i‘ −
1
2
|tc1P−Ofc2 | n̂ia −

1
2
|fc1P:

2

. (95)

Now, by applying the variational principle, we obtain an improved
inequality

E0(2L+1)−
1
2
E0(2L+2)−

1
2
E0(2L)

\
U
2

C
i ¥ L

C
c1, c2

rc1 rc2 :Otc2 | n̂i −
1
2
|tc1P−Ofc2 | n̂i −

1
2
|fc1P:

2

\
U
2

C
i ¥ L

C
c

r2c 1Otc | n̂i −
1
2
|tcP−Ofc | n̂i −

1
2
|fcP2

2

. (96)

Furthermore, by applying the Cauchy–Schwartz inequality, we find that
the right-hand side of Eq. (96) is bounded below by

U
2

C
i ¥ L

C
c

r2c 1Otc | n̂i −
1
2
|tcP−Ofc | n̂i −

1
2
|fcP2

2

\
U
2
5C
i ¥ L

C
c

r2c 6
−1 5C

i ¥ L

C
c

r2c 1Otc | n̂i −
1
2
|tcP−Ofc | n̂i −

1
2 |fcP26

2

=
U

2NL
OY0(2L+1)| (N̂‘ −N̂a) |Y0(2L+1)P2=

U
2NL

. (97)
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Therefore, we have

E0(2L+1)−
1
2
E0(2L+2)−

1
2
E0(2L) \

U
2NL

. (98)

That ends the proof of Theorem 6.1. L

As a special case of the Dyson–Lieb–Simon theorem, the proof of
Theorem 6.1 contains all the essential ingredients to establish Theorem 3.2.
Mathematically minded readers can find a more abstract proof of the DLS
theorem in the appendix of ref. 43.

Theorem 6.1 can be easily extended to the transformed periodic
Anderson Hamiltonian H̃A without further ado. However, for the Hamil-
tonian H̃K, more careful consideration is needed. In particular, we should
check whether both the wave functions Ỹ1(2L+2) and Ỹ2(2L) constructed
in Eq. (91) satisfy the constraint condition (24).

For this purpose, we first write the ground-state wave function
Ỹ0(2L+1) of H̃K as a summation of ‘‘partial’’ wave functions

Ỹ0(2L+1)=C
a, b

(1) W (1)
abk

(1) ‘
a é k (1) ab +·· ·+C

a, b

(k) W(k)
ab k

(k) ‘
a é k (k) ab +·· · .

(99)

In each partial sum, the distribution of F̂-quasifermions is specified and
satisfies the constraint condition (24). Therefore, the coefficient matrix W
of the ground-state wave function has the following block diagonal form

W=diag(W(1),..., W(k),...). (100)

For definiteness, let us take the submatrix W(k) for example. Assume that
the number of F̂-quasifermion pairs in this sector is nF. Then, in this sector,
there are nc‘=L+1−nF up-spin and nca=L−nF down-spin itinerant elec-
trons. Consequently, the coefficients of this partial sum can be organized
into a Cnc‘

NL ×Cnca
NL submatrix. By applying the singular polar decomposition

theorem to W(k), we find orthonormal matrices Uk and Vk such that UkW
(k)Vk

=R (k). Obviously, the new bases of vectors {k (k) ‘l } and {f (k) al } constructed
according to Eq. (87) have also the same distribution of F̂-quasifermions.

Next, we introduce unitary matrices U and V with the same block
diagonal form

U=diag(U1,..., Uk,...), V=diag(V1,..., Vk,...), (101)

which gives R=UWV=diag(R (1),..., R (k),...). It is easy to check that the
trial wave functions Ỹ1 and Ỹ2 constructed by coefficient matrix R are
subject to the constraint condition (24).
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In condensed matter physics, the quantity

DB(L) — E0(2L+1)− 1
2 E0(2L)− 1

2 E0(2L+2) (102)

is called the binding energy of electrons. Theorem 6.1 shows that, for the
negative-U Hubbard model on a finite lattice, the binding energy of elec-
trons is always nonzero. Consequently, they will be bound into the Cooper
pairs. The same method was also used to study the superconducting cross-
over in the ultrasmall metallic grains. (72) As is well known, the BCS theory
gives a very accurate description of superconductivity in large metallic
samples. (73) Then, a natural question is whether such a description is still
valid as the sample size shrinks to the nanometer scale. Anderson
addressed this problem in a paper published in 1959. (74) He argued that,
when the average single-particle energy level spacing d, which is inversely
proportional to the volume of a metallic grain, becomes of the order of the
BCS gap, superconductivity will disappear. Recently, theoretical interest on
this topics is rekindled by the experimental observations of the parity
dependent spectroscopic gaps in nanometer-scale Al grains. (75) The impor-
tant issue is that, in these experiments, the Coulomb charging effects
actually allows one to fix the number of electrons in the grain. Conse-
quently, in dealing with these systems, the particle number conservation
law must be strictly observed. In other words, the description of supercon-
ductivity in ultrasmall metallic grains calls for a canonical ensemble for-
malism. The interested readers can find a detailed review on the latest
numerical and analytical developments in this field in ref. 76. One of the
important conclusions is that the superconducting crossover in the metallic
grains is actually a smooth process. In our works, (72) based on Theorem 6.1,
we studied the parity effect parameter (77) and the pair-mixing correlation
function (78) of these superconducting grains. Our rigorous results support
the above mentioned conclusion.

Theorem 6.1 can also be applied to establish a general relation
between the quasi-particle gap and the spin excitation gap in the strongly
correlated electron models. It is summarized in the following theorem.

Theorem 6.2. Define the quasi-particle gap DQP and the spin exci-
tation gap DS of the half-filled Hubbard model, the periodic Anderson
model, and the Kondo lattice model by

DQP — E0(Ñ+1)+E0(Ñ−1)−2E0(Ñ),

DS — E0(Ñ, S=1)−E0(Ñ, S=0), (103)
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where Ñ=NL for the Hubbard model and Ñ=2NL for both the periodic
Anderson model and the Kondo lattice model. For these models on a
simple cubic lattice, DQP and DS satisfy inequality

DQP \ DS. (104)

Originally, this relation was observed by the numerical calculations on
small size samples. (79) Based on Theorem 6.1, we proved it rigorously in
ref. 37.

Proof. By applying respectively the inverse of the partial particle-
hole transformations ŨH, ŨA, and ŨK to the ‘‘negative coupling’’ Hamilto-
nians H̃H, H̃A, and H̃K, we obtain the original Hamiltonians HH, HA, and
HK. Here, we are interested in the change of inequality (81) under these
transformations, with 2L=Ñ. In the following, to distinguish the ground-
state energies of the ‘‘negative coupling’’ Hamiltonians from their coun-
terparts of the original Hamiltonians, we shall use E20 for the former and
and E0 for the latter.

First, we have identity E20(Ñ)=E0(Ñ). That is due to fact that, under
the unitary partial particle-hole transformation, the global ground states
Ỹ0 of the negative coupling Hamiltonians are respectively mapped onto Y0,
the global ground states of the original Hamiltonians. As discussed in
Section 2, these states are in the same half-filled subspace V(Ñ) since the
strongly correlated electron models possess the particle-hole symmetry at
half-filling. Furthermore, by Corollary 5.1 and Theorem 5.2, both Ỹ0(Ñ)
and Y0(Ñ) have spin number S=0 when L is a simple cubic lattice.
Therefore, we shall denote this global ground state energy by E0(Ñ, S=0)
in the following.

Next, we show that

E20(Ñ+1)=E0(Ñ+1) (105)

also holds. In fact, since the partial particle-hole transformations only
change the particle number N‘ from Ñ/2+1 to Ñ/2−1 and keep Na

unchanged, the ground-state energy E20(Ñ+1)=E20(Ñ/2+1, Ñ/2) of
the ‘‘negative coupling’’ Hamiltonians equals the ground-state energy
E0(Ñ/2−1, Ñ/2)=E0(Ñ−1) of the original Hamiltonians. Furthermore,
by the particle-hole symmetry of these Hamiltonians, we have identity
E0(Ñ−1)=E0(Ñ+1). Therefore, Eq. (105) holds true.

The change of E20(Ñ+2) under the partial particle-hole transforma-
tions demands a careful thinking. By Corollary 5.1 in Section 5, we know
that the ground state Ỹ0(Ñ+2) of the ‘‘negative coupling’’ Hamiltonians
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has spin S=0. In other words, it is a state in the subspace
V(Ñ/2+1, Ñ/2+1). Under the partial particle-hole transformations, this
subspace is mapped into V(Ñ/2−1, Ñ/2+1), in which each state has
quantum number Sz=−1/2. Therefore, Ỹ0(Ñ+2) is mapped onto
Y0(Ñ/2−1, Ñ/2+1), the ground state of the original Hamiltonians in this
subspace. As shown in Theorem 5.2, this state has spin S=1/2 and hence,
E20(Ñ+2)=E0(Ñ, S=1) holds.

In summary, under the inverse of the partial particle-hole transforma-
tions, inequality (81) becomes

E0(Ñ+1) \ 1
2 E0(Ñ, S=0)+1

2 E0(Ñ, S=1). (106)

By subtracting the global ground-state energy E0(Ñ, S=0) from both sides
of Eq. (106) and multiplying it by a factor 2, we obtain

2[E0(Ñ+1)−E0(Ñ)] \ E0(Ñ, S=1)−E0(Ñ, S=0). (107)

Equation (104) is finally proven by substituting identity E0(Ñ+1)=
E0(Ñ−1) into the left-hand side of Eq. (107). That ends our proof of
Theorem 6.2. L

A similar relation DC \ DS can be also proven for the charged gap
DC — E0(Ñ+2)−E0(Ñ) and the spin excitation DS of the strongly corre-
lated electron models on a simple cubic lattice. Its detailed proof is given in
the second paper of ref. 37.

7. THE SPIN-REFLECTION-POSITIVITY METHOD AT NONZERO

TEMPERATURE

In the previous sections, we mainly concentrated on the case of tem-
perature T=0. In fact, both Theorems 3.1 and 3.2 were originally proven
for the cases of nonzero temperature. In this section, we shall explain
briefly how to extend some of the results established in the previous sec-
tions to nonzero temperature cases.

In a paper published in 1990, (33) Kubo and Kishi introduced the finite-
temperature version of spin-reflection-positivity method and applied it to
derive some upper bounds to the spin susceptibility and the on-site pairing
susceptibility of the Hubbard model. Their results can be summarized in
the following theorem.

Theorem 7.1. Define the Duhamel two-point function by

(Â, B̂) — F
1

0
dxOexpbxĤ Â exp−bxĤ B̂PĤ. (108)
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Then, for the negative-U Hubbard Hamiltonian on an arbitrary lattice L,
its spin susceptibility satisfies inequality

(Ŝz
q, Ŝ

z
−q) — 1

1
NL

C
i ¥ L

Ŝize−iq · i,
1
NL

C
i ¥ L

Ŝize iq · i2 [
1

4b |U|
. (109)

Moreover, if lattice L is bipartite, the on-site pairing susceptibility function

(P̂q, P̂−q) — 1
1

`NL
C
i ¥ L

Ĉ†
i‘Ĉ

†
ia exp−iq · i,

1

`NL
C
i ¥ L

ĈiaĈi‘e iq · i2 (110)

of the half-filled Hubbard model satisfies the same inequality.
The general properties of the Duhamel function and, in particular, its

relation to the more familiar symmetric correlation function OÂB̂+B̂ÂPĤ
are discussed in ref. 46.

Theorem 7.1 implies the absence of the magnetic order in the negative-
U Hubbard model and the on-site pairing off-diagonal order in the half-
filled Hubbard model. Since its proof demands some technical prepara-
tions, we shall not discuss it here. Instead, we consider another example
whose proof requires little more than what we have explained above and
can be thought of as an application of Theorem 3.1.

Theorem 7.2. Take any pair of lattice sites h and k. Then, at T ] 0,
the transverse spin correlation functions of the Hubbard model, the perio-
dic Anderson model, and the Kondo lattice model on a bipartite lattice are
antiferromagnetic. More precisely, the following inequality

OŜh− Ŝk+PĤ ˛
\ 0, if both h and k ¥ A or B;
[ 0, otherwise.

(111)

holds for these models at half-filling.
In Section 5, we proved inequality (111) for the ground states of these

models at half-filling. Here, by using the finite-temperature version of the
spin-reflection-positivity method, we re-establish it at nonzero temperature.
Therefore, the antiferromagnetic spin correlation is always dominant in
these models, even if their magnetic long-range orders have been destroyed
by thermal fluctuations at sufficiently high temperature.

Proof of Theorem 7.2. We take the Hubbard model for example.
Since ZĤ — Tr e−bĤ is a positive quantity, Theorem 7.2 is proven if we
can show that inequality (111) is satisfied by the numerator
TrV(NL)[Ŝh− Ŝk+exp(−bHH)]. Furthermore, because the subspace V(NL) is
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a direct sum of subspaces {V(NL−L, L)}, this task is further reduced to
establish inequality (111) for each trace TrV(NL−L, L)[Ŝh− Ŝk+exp(−bHH)].

Under the partial particle-hole transformation, the Hubbard
Hamiltonian is mapped into the negative-U Hubbard Hamiltonian. In the
meantime, V(NL−L, L) is mapped into the subspace V(L, L) and the spin
operators Ŝh− and Ŝk+ become the pairing operators E(h) Ĉ†

haĈ
†
h‘ and

E(k) Ĉk‘Ĉka , respectively. Therefore, Theorem 7.2 is actually a corollary of
the following lemma.

Lemma 7.1. At T ] 0, the on-site Cooper-pairing correlation func-
tion of the negative-U Hubbard Hamiltonian in any symmetric subspace
V(L, L) with 0 [ L [NL is nonnegative, i.e., inequality

TrV(L, L)(Ĉ
†
haĈ

†
h‘Ĉk‘Ĉkae−bH̃H) \ 0 (112)

holds for any pair of lattice sites h and k.
In Section 5, we proved inequality (112) for the ground state of the

negative-U Hubbard model. We would like to emphasize that, in the proofs
of Theorems 5.3 and 5.4, the positive definiteness of the coefficient matrix
W of the ground-state wave function Ỹ0(2L) plays a pivotal role.
However, as temperature T increases, one expects that more and more
excited states of the system are activated. On the other hand, these states
must have indefinite coefficient matrices because they are orthogonal to the
ground state. Therefore, it is reasonable to question the validity of inequal-
ity (112) when temperature is sufficiently high. Lemma 7.1 tells us that the
influence of the ground state in the negative-U Hubbard model is actually
robust against thermal fluctuations. In other words, the dominance of the
on-site pairing correlation at q=0 is protected by the spin-reflection posi-
tivity of the Hamiltonian at nonzero temperature.

Now, let us turn to the proof of Lemma 7.1.

Proof of Lemma 7.1. First, we rewrite the trace in Eq. (112) as

TrV(L, L)[Ĉ
†
haĈ

†
h‘Ĉk‘Ĉka exp(−bH̃H)]

=TrV(L, L) 5(Ĉ†
h‘Ĉk‘)(Ĉ

†
haĈka) exp 1 −b 1 T̂‘ −

U
2
C
i

1 n̂i‘ −
1
2
22

+T̂a −
U
2
C
i

1 n̂ia −
1
2
222−bU

2
C
i ¥ L

(n̂i‘ −n̂ia)226 , (113)
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where T̂s represents the hopping term of the fermions with spin s. In the
derivation of Eq. (113), we used identity n̂2is=n̂is. To go further, we need to
decouple operators n̂i‘ from n̂ia in the interaction terms. It can be achieved
in two steps. First, by using the Trotter formula, (80) we decompose
exp(−bH̃H) into a product of exponential operators

exp(−bH̃H)= lim
MQ.

5exp(−bK̂‘/M) exp(−bK̂a/M)

× exp 1 − bU
2M

C
i ¥ L

(n̂i‘ −n̂ia)226
M

, (114)

where operator K̂s stands for T̂s−(U/2) ; i ¥ L (n̂is−1/2)2. Then, we apply
the well-known Hubbard–Stratonovich transformation

exp(−Â2)=
1

2`p
F
.

−.
dk exp(−k2/4+ikÂ) (115)

to each exponential operator containing interaction terms. A detailed dis-
cussion of this well-established procedure can be found in any standard
textbook on the quantum field theory. (13)

After carrying on the above-mentioned procedure, we obtain

TrV(L, L)[Ĉ
†
haĈ

†
h‘Ĉk‘Ĉka exp(−bH̃H)]

= lim
MQ.

1

(2`p )MNL
F D
m, i

dki, m exp 1 −C
m, i

k2i, m
4
2

×TrV(N‘=L)
3(Ĉ†

h‘Ĉk‘) D
M

m=1

5exp 1 − b
M

K̂‘
2

× exp 1 i`bU/2M C
i ¥ L

ki, m n̂i‘
264

×TrV(Na=L)
3(Ĉ†

haĈka) D
M

m=1

5exp 1 − b
M

K̂a
2

× exp 1 −i`b/2M C
i ¥ L

ki, m n̂ia
264 . (116)

In Eq. (116), TrV(Ns=L) denotes the sum over all the possible configurations
of L fermions with spin s in the lattice. Obviously, the traces on the right-
hand side of Eq. (116) are complex conjugate to each other. Therefore,
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their product is a positive quantity. Moreover, other factors in the
integrand are also positive. Consequently, the whole expression in Eq. (116)
is a positive quantity. L

After establishing Lemma 7.1, we immediately obtain

E(h) E(k) TrV(NL−L, L)(Ŝh− Ŝk+e−bHH) \ 0 (117)

for the (positive-U) Hubbard Hamiltonian, by applying the inverse of
the partial particle-hole transformation ŨH to Eq. (112). Therefore,
TrV(NL−L, L)(Ŝh− Ŝk+e−bHH) is antiferromagnetic. So does the spin correlation
function OŜh− Ŝk+PĤ.

That ends the proof of Theorem 7.2. L

Since the Hubbard Hamiltonian is invariant under the rotation in the
spin space, we further conclude that, at half-filling, the longitudinal spin
correlation functions OŜhzŜkzPĤ of these strongly correlated electron models
are antiferromagnetic at T ] 0.

As usual, in proving Lemma 7.1 and Theorem 7.2 for the Kondo
lattice model, we need to take the constraint condition (24) into considera-
tion. For this purpose, we introduce a subspace

V2(L, L) — C
L

nf=0
C
{nF}

À V(nc‘=L−nF, n
c
a=L−nF, {nF}), (118)

where {nF} represents a specific configuration of nF paired F-quasifermions
in the lattice. Obviously, V2(L, L) is a subspace of V(L, L) and the con-
straint condition (24) is automatically satisfied in it. Then, by replacing the
trace TrV(L, L) in Eq. (112) with TrV2(L, L) and repeating the rest of the proof,
one can easily re-establish Lemma 7.1 and Theorem 7.2 for the Kondo
lattice model.

An interesting implication of Theorem 7.2 is that, in one- and two-
dimensions, the ferromagnetic spin-wave excitations of the itinerant elec-
tron ferrimagnets discussed in Section 5 are gapless. The detailed discussion
on this issue can be found in the second paper of refs. 35.

8. SUMMARY: SOME RELATED ISSUE AND OPEN PROBLEMS

Before summarizing this paper, we would like to say a few words on
some related approach to the strongly correlated electron systems and
mention several open problems, which attract recently many condensed
matter physicists’ interest.
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8.1. The Space-Reflection Approach and the Flux Phase Conjecture

When we talk about ‘‘reflection’’ in a lattice system, most of us would
immediately have the ‘‘space reflection’’ in mind. More precisely, by
imposing the periodic boundary condition on lattice L, we cut it into two
equal halves, the left and the right half sublattices, by a perpendicular plane
P to L. As a result, algebra U of the relevant observables can be naturally
written as a direct product of UL, the subalgebra on the left sublattice LL,
and UR on the right sublattice LR. With this decomposition, we shall look
for the Hamiltonians with the reflection positive form of Theorem 3.1 and
then, carry on our further investigation. Comparing with the spin reflec-
tion, this approach is so natural and straightforward. People would ask
why it was not taken.

Indeed, for the localized spin models, this strategy was effectively used
to establish the magnetic long-range orders in both nonzero (46, 47) and zero
temperature cases. (81, 82) However, it achieves only limited success in explor-
ing the properties of the itinerant electron systems. The main difficulty is
caused by the fermion characteristics of the electron hopping terms in these
models. To make this point more clear, let us take a spinless electron tight-
binding Hamiltonian for example. In terms of the division L=LL 2 LR of
the lattice, this Hamiltonian is of the following form

Ĥ=−t C
OijP

ĉ†i ĉj=−t C
OijP ¥ L

ĉ†i ĉj −t C
OijP ¥ R

ĉ†i ĉj −t C
OijP ¥M

ĉ†i ĉj, (119)

where t > 0 is a real parameter. In Eq. (119), the third term describes the
electron hopping between the left and the right halves of the lattice.

To rewrite Hamiltonian (119) into a direct product form of the opera-
tors in UL and UR, we follow ref. 83 and introduce a new set of quasifer-
mion perators Ĉi by

Ĉi=(−1)N̂Lĉi, Ĉ†
i =ĉ†i (−1)N̂L, (120)

where N̂L is the particle number operator in the left half of the lattice, i.e.,
N̂L=; i ¥ L ĉ†i ĉi. It is easy to check that the operators Ĉi and Ĉj satisfy the
conventional anticommutation relations if i, j ¥ L or i, j ¥ R, but commute
with each other if i ¥ L, j ¥ R or i ¥ R, j ¥ L. That allows us to rewrite
Hamiltonian Ĥ as

Ĥ=T̂L é ÎR+ÎL é T̂R −t C
OijP ¥M

(Ĉ†
i é Ĉj+Ĉi é Ĉ†

j ). (121)
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Then, we make the simple particle-hole transformation on the right half of
the lattice and obtain

Û†ĈiÛ=Ĉ†
i , Û†Ĉ†

i Û=Ĉi, (122)

for all i ¥ R while the operators Ĉi with i ¥ L remain unchanged. Under this
transformation, the Hamiltonian becomes

H̃=Û†ĤÛ=−t C
OijP ¥ L

Ĉ†
i Ĉj+t C

OijP ¥ R
Ĉ†

i Ĉj −t

× C
i ¥ L, j ¥ R

Ĉ†
i é Ĉ†

j −t C
i ¥ R, j ¥ L

Ĉi é Ĉj. (123)

In the transformed Hamiltonian H̃, although the last two terms are in the
form required by the reflection positivity, the change of sign in the second
term violates it. That explains why the simple space-reflection approach
does not apply to the itinerant electron models.

However, as the ancient Chinese philosopher Lao-tzu would like to
say when he was in trouble, a bad luck may be an omen for good fortune.
Interestingly, it is this violation of the space reflection positivity in the iti-
nerant electron systems which makes it possible to prove rigorously the so-
called flux phase conjecture. This conjecture states that the ground-state
energy of a half-filled itinerant electron model in an external magnetic field
is minimized when the magnetic flux equals p (in unit hc/e) per pla-
quette (84) (Zeeman terms are excluded). This conjecture, along with exten-
sions to positive temperature, higher dimensional geometries, and
allowance for some electron-electron interactions was rigorously proven by
Lieb, using the space-reflection approach. (85) Later, a simplified proof was
given by Macris and Nachtergaele. (83)

Here, we sketch its proof as another application of Theorem 3.2 to the
strongly correlated electron models. For simplicity, we consider the spinless
electron tight-binding Hamiltonian (119) on a two-dimensional square
lattice.

In an external magnetic field, the hopping constants become, in
general, site-dependent complex parameters by the so-called Peierls substi-
tution. (86) In terms of the quasi-fermion operators, the Hamiltonian of this
system has the following form

H= C
OijP ¥ L

tijĈ
†
i Ĉj+ C

OijP ¥ R
tijĈ

†
i Ĉj+ C

ij ¥M
tijĈ

†
i Ĉj, (124)
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where OijP denotes a pair of nearest-neighbor sites and tij=−t exp(ifij) is
the hopping amplitude of electron from site j to site i in the magnetic field.

Let c=(i1, ..., ik) be a set of distinct lattice sites such that Oii, ii+1P for
i=1, ..., k−1, and Oik, i1P are pairs of nearest-neighbor sites. It is called a
circuit in the following. By representing the circuit as an ordered sequence,
we have implicitly given it one of the two possible orientations (for k > 2).

It can be shown (87) that the ground-state energy of Hamiltonian (124)
depends on the hopping constants {tij=t exp(ifij)} only through their
absolute value t and the flux variables Fc for circuits {c}, which are defined
by

Fc=C
n

k=1
fik, ik+1 , mod 2p. (125)

This follows from the fact that, for any two phases {fij} and {f −ij} which
give the same fluxes Fc for all the possible circuits c, there is a unitary
transformation of the following form

Ĉ†
i Q e ihiĈ†

i , Ĉi Q e−ihiĈi, (126)

which changes phase {fij} into {f −ij}. This transformation is called a gauge
transformation. In particular, a phase {fcij} is called canonical if it yields a
uniform flux p for each unit cell.

Under the particle-hole transformation defined in Eq. (122), the
Hamiltonian is changed into

H̃= C
OijP ¥ L

tijĈ
†
i Ĉj+ C

OijP ¥ R
(−tij ) Ĉ

†
i Ĉj

+ C
i ¥ L, j ¥ R

tijĈ
†
i é Ĉ†

j + C
i ¥ R, j ¥ L

tijĈi é Ĉj. (127)

For a specific phase {fij}, we perform gauge transformation

Ĉ†
i Q −e−ifijĈ†

i , Ĉi Q −e ifijĈi (128)

for sites i ¥ R which are connected to a site j ¥ L by a nonzero hopping
constant tij. Under this transformation, all the hopping matrix elements
across the reflection plane in Hamiltonian (127) become negative, i.e., we
have

H̃= C
OijP ¥ L

t −ijĈ
†
i Ĉj+ C

OijP ¥ R
(−t −ij) Ĉ

†
i Ĉj − C

i ¥ L, j ¥ R
tĈ†

i é Ĉ†
j − C

i ¥ R, j ¥ L
tĈi é Ĉj.

(129)
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To this Hamiltonian, Theorem 3.2 applies. Consequently, we obtain the
following lemma for the ground-state energy of the tight-binding Hamil-
tonian (124) (not H̃).

Lemma 8.1. Let FL (resp. FR) be the set of fluxes through the unit
cells which are entirely in LL (resp. LR) and FM be the flux configuration
for the unit cells which are cut in middle by the reflection plane P. Then,
the ground-state energy E0(FL, FM, FR) of the tight-binding Hamiltonian
at half-filling satisfies

E0(FL, FM, FR) \
1
2 E0(−FR, F

(c)
M , FR)+

1
2 E0(FL, F

(c)
M , −FL), (130)

where F (c)
M is the canonical flux configuration through the unit cells inter-

secting P.
Lemma 8.1 implies that one of the two energies, say E0(−FR, F

(c)
M , FR)

must be less than E0(FL, FM, FR). Therefore, by repeating this argu-
ment with respect to a properly-chosen sequence of reflection planes
(P1, P2,..., PN), we reach the following conclusion

Theorem 8.1. The ground-state energy of the tight-binding
Hamiltonian Ĥ is minimized by the canonical phase. More precisely, we
have

inf
{fij}

E0(H({fij}) \ E0(H({f (c)ij })). (131)

Following the above steps, one see easily that the effect of the extra
magnetic flux p per unit cell is actually to cancel out the unwanted change
of sign in the hopping constants under the particle-hole transformation.
Therefore, Theorem 8.1 is a result of the Pauli principle which interferes
with the electron orbital motion in a magnetic field.

8.2. Some Open Problems

Currently, the strongly correlated electron systems are still under
intensive investigations by condensed matter physicists. The whole field is
in rapid development. Here, we would like to mention two open problems
which attract recently many condensed matter physicists’ interest.

In this paper, we explained the spin-reflection-positivity method and
its applications to strongly correlated electron systems. However, the
readers may find that all the results established for the (positive-U)
Hubbard model are mainly restricted to the half-filled case. In fact, few
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rigorous results have been proven for the doped cases with N ]NL. (88)

This is due to the fact that the partial particle-hole transformation,
which is needed to make the sign of interaction between up- and down-
spin electrons negative, maps also the subspace V(L/2, L/2) into
V(NL−L/2, L/2). However, when the system is doped, NL−L/2 ] L/2.
Consequently, although the transformed Hamiltonian H̃H has seemingly
the spin-reflection positive form, the relevant subspaces V‘(NL−L/2) and
Va(L/2), in which the operators T̂‘ and T̂a act respectively, are not iso-
morphic. Therefore, the spin-reflection-positivity method does not apply. It
is still an open problem to treat the doped strongly correlated electron
models on a mathematically rigorous basis.

Another open problem is how to apply the spin-reflection-positivity
method to the frustrated strongly correlated electron models. A well-known
example is the so-called t− t −−U Hubbard model on a simple cubic lattice.
In this model, except the nearest-neighbor hopping, electrons are also
allowed to hop between the next-nearest-neighbor sites with amplitude t −. (89)

To this model, the simple cubic lattice is no longer bipartite. Consequently,
under the partial particle-hole transformation, the hopping energy terms T̂‘

and T̂a do not even have the same form and hence, Theorem 3.1 cannot be
applied. Up to now, no rigorous results have been established for this
model.

8.3. Summary

In summary, in the present paper, we discuss the spin-reflection-posi-
tivity method and its applications to the strongly correlated electron
systems in a pedagogical way. In many cases, this method can be success-
fully used to deal with the technical difficulties caused by the fermion sign
problem plagued in the itinerant electron models. Consequently, it enables
us to prove rigorously some interesting properties of the strongly correlated
electron systems. In particular, by applying this method, we are able to
explore the electron pairing correlation and the magnetic correlation in the
Hubbard model, the periodic Anderson model, and the Kondo lattice
model at either zero or nonzero temperatures.

APPENDIX

In this appendix, for reader’s convenience, we shall give a simplified
proof of the singular polar decomposition theorem, which we applied to
prove Theorem 6.1 in Section 6. One can find a more detailed proof of this
theorem in ref. 71.
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Proof of the Singular Polar Decomposition Theorem. First, let
us assume that m < n. In this case, we consider matrix product AA†. It is an
m×m semipositive definite matrix. Therefore, it has m orthonormal eigen-
vectors (x1, x2,..., xm), which satisfy equations

AA†xi=l
2
i xi, 1 [ i [ m. (132)

Re-organizing {li} in a decreasing order

l1 \ l2 \ · · · \ lk > lk+1=·· ·=lm=0, (133)

we define a diagonal semipositive definite matrix L1 and an m×m unitary
matrix U1 by

L1=R
l1 · · · 0
··· · · · · ·
0 · · ·lm

S (134)

and

U1=(x1, x2,..., xm), (135)

where xi represents the i th column of matrix U1.
Next, we construct matrix V1. The first k rows of V1 are given by

V i
1=

1
li

(A†xi)†. (136)

Since li ] 0 for 1 [ i [ k, these rows are well defined. To define the rest
m−k rows of V1, we notice that the first k rows defined in Eq. (136) are
orthonormal to each other. Actually, we have

OV i
1 | V

j
1P=

1
lilj

OA†xi | A†xjP=
1
lilj

x†iAA†xj=
1
lilj
l2jx

†
i xj=dij. (137)

In the last step of the above-derivation, we used the definition of the
vectors {xi}. On the other hand, since each row V i

1 is an n-dimensional
vector, one can find other m−k orthonormal vectors z†1, z

†
2,..., z

†
m−k, which

are orthogonal to each V i
1 with 1 [ i [ k. We let them be the rest m−k

rows of V1. Consequently, matrix V1 has m orthonormal rows.
Finally, we need to show that

U†
1A=L1V1 (138)
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holds for the above defined matrices. Obviously, by their definitions, the
first k rows of U†

1A and L1V1 are correspondingly identical. Consequently,
we need only to consider the rest m−k rows of both U†

1A and L1V1. For
L1V1, these rows are zero vectors since lk+1=·· ·=lm=0. We now show
that the corresponding rows in U†

1A are also zero vectors.
Let us take one row x†lA of U†

1A with k+1 [ l [ m and calculate its
norm.

Ox†lA | x†lAP=C
n

a=1

1 C
m

b=1
(xl)b Aba 21 C

m

c=1
(xl)c Aca 2

=C
n

a=1

5 C
m

b=1
C
m

c=1
Aba(xl)b Aca(xl)c6

=C
n

a=1

5 C
m

b=1
C
m

c=1
(xl)c AcaA

†
ab(xl)b6

=x†lAA†xl=l
2
l x

†
l xl=0. (139)

Therefore, x†lA=0 and Eq. (138) is an identity.
Similarly, when m > n, one can prove that A=V2L2U2 holds by

considering matrix product A†A instead of AA†. L
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